IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224014476.html
   My bibliography  Save this article

Benchmarking and contribution analysis of carbon emission reduction for renewable power systems considering multi-factor coupling

Author

Listed:
  • Yan, Yamin
  • Chang, He
  • Yan, Jie
  • Li, Li
  • Liu, Chao
  • Xiang, Kangli
  • Liu, Yongqian

Abstract

The renewable power system serves as a vital path towards achieving carbon peaking and neutrality goals. Accurately quantifying the carbon reduction emissions of renewable power systems and evaluating the contribution of various influencing factors to carbon reduction is quite important, which is related to the formulation of energy policies and regional power planning by the power grid or relevant departments. However, in the current research, there are few studies related to the quantification of carbon emission reduction, and in terms of optimal scheduling, the existing studies often only consider a single factor, ignoring the coupling effect between multiple factors, which makes the contribution of each optimization strategy to carbon emission reduction unclear. Therefore, based on the current power system scheduling mechanism and dual-carbon background, this paper optimizes the carbon emission reduction benchmark factor and its corresponding weight, proposes a new carbon emission reduction benchmark of renewable power system, and verifies the accuracy of this benchmark based on the classical scheduling model. On this basis, the mathematical models of thermal power deep peak shaving (DPS), electricity export (ELE) and green certificate trading (GCT) are established. Each factor is introduced into the classical scheduling model to simulate and verify the promoting effect of each influencing factor on carbon emission reduction. Finally, the above different influencing factors were constructed in different coupling scenarios to calculate the carbon emission reduction under each scenario, and the contribution degree of each influencing factor to carbon emission reduction was analyzed sharply according to the value of cooperation game instead of the traditional calculation method. The results show that the proposed benchmark can reduce the error by 2.6%–15.5 %. In the carbon emission reduction contribution simulation, the three factors have coupling effects, and deep peak shaving and electricity export are more sensitive to carbon emission reduction contribution. This study provides valuable insights for the development of carbon reduction strategies for renewable power systems.

Suggested Citation

  • Yan, Yamin & Chang, He & Yan, Jie & Li, Li & Liu, Chao & Xiang, Kangli & Liu, Yongqian, 2024. "Benchmarking and contribution analysis of carbon emission reduction for renewable power systems considering multi-factor coupling," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224014476
    DOI: 10.1016/j.energy.2024.131674
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224014476
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Chongchong & Cai, Xiangyu & Lin, Boqiang, 2023. "The low-carbon transition of China's power sector: Scale effect of grid upgrading," Energy, Elsevier, vol. 285(C).
    2. Xiang, Yue & Wu, Gang & Shen, Xiaodong & Ma, Yuhang & Gou, Jing & Xu, Weiting & Liu, Junyong, 2021. "Low-carbon economic dispatch of electricity-gas systems," Energy, Elsevier, vol. 226(C).
    3. Wen, Yi & Kamranzad, Bahareh & Lin, Pengzhi, 2021. "Assessment of long-term offshore wind energy potential in the south and southeast coasts of China based on a 55-year dataset," Energy, Elsevier, vol. 224(C).
    4. William E. Hart & Carl D. Laird & Jean-Paul Watson & David L. Woodruff & Gabriel A. Hackebeil & Bethany L. Nicholson & John D. Siirola, 2017. "Pyomo — Optimization Modeling in Python," Springer Optimization and Its Applications, Springer, edition 2, number 978-3-319-58821-6, July.
    5. Jin, Jingliang & Zhou, Peng & Li, Chenyu & Guo, Xiaojun & Zhang, Mingming, 2019. "Low-carbon power dispatch with wind power based on carbon trading mechanism," Energy, Elsevier, vol. 170(C), pages 250-260.
    6. Li, Xiaozhu & Wang, Weiqing & Wang, Haiyun & Wu, Jiahui & Fan, Xiaochao & Xu, Qidan, 2020. "Dynamic environmental economic dispatch of hybrid renewable energy systems based on tradable green certificates," Energy, Elsevier, vol. 193(C).
    7. Zhang, Shijie & Wei, Jing & Chen, Xi & Zhao, Yuhao, 2020. "China in global wind power development: Role, status and impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    8. Nagababu, Garlapati & Srinivas, Bhasuru Abhinaya & Kachhwaha, Surendra Singh & Puppala, Harish & Kumar, Surisetty V.V.Arun, 2023. "Can offshore wind energy help to attain carbon neutrality amid climate change? A GIS-MCDM based analysis to unravel the facts using CORDEX-SA," Renewable Energy, Elsevier, vol. 219(P1).
    9. Li, Mingquan & Gao, Huiwen & Abdulla, Ahmed & Shan, Rui & Gao, Shuo, 2022. "Combined effects of carbon pricing and power market reform on CO2 emissions reduction in China's electricity sector," Energy, Elsevier, vol. 257(C).
    10. Liu, Fa & Sun, Fubao & Wang, Xunming, 2023. "Impact of turbine technology on wind energy potential and CO2 emission reduction under different wind resource conditions in China," Applied Energy, Elsevier, vol. 348(C).
    11. Cai, Liya & Luo, Ji & Wang, Minghui & Guo, Jianfeng & Duan, Jinglin & Li, Jingtao & Li, Shuo & Liu, Liting & Ren, Dangpei, 2023. "Pathways for municipalities to achieve carbon emission peak and carbon neutrality: A study based on the LEAP model," Energy, Elsevier, vol. 262(PB).
    12. Zhao, Xiaoli & Cai, Qiong & Zhang, Sufang & Luo, Kaiyan, 2017. "The substitution of wind power for coal-fired power to realize China's CO2 emissions reduction targets in 2020 and 2030," Energy, Elsevier, vol. 120(C), pages 164-178.
    13. Chen, Zhenbin & Wang, Li & Wei, Zhilong & Wang, Yu & Deng, Jiaojun, 2022. "Effect of components on the emulsification characteristic of glucose solution emulsified heavy fuel oil," Energy, Elsevier, vol. 244(PB).
    14. Zhou, Xianyang & Zhou, Dequn & Ding, Hao & Zhao, Siqi & Wang, Qunwei, 2023. "Low-carbon transition of China's provincial power sector under renewable portfolio standards and carbon cap," Energy, Elsevier, vol. 283(C).
    15. Wang, Shouxiang & Wang, Shaomin & Zhao, Qianyu & Dong, Shuai & Li, Hao, 2023. "Optimal dispatch of integrated energy station considering carbon capture and hydrogen demand," Energy, Elsevier, vol. 269(C).
    16. Zou, Hongyang & Du, Huibin & Brown, Marilyn A. & Mao, Guozhu, 2017. "Large-scale PV power generation in China: A grid parity and techno-economic analysis," Energy, Elsevier, vol. 134(C), pages 256-268.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Jingliang & Wen, Qinglan & Cheng, Siqi & Qiu, Yaru & Zhang, Xianyue & Guo, Xiaojun, 2022. "Optimization of carbon emission reduction paths in the low-carbon power dispatching process," Renewable Energy, Elsevier, vol. 188(C), pages 425-436.
    2. Liu, Zhi-Feng & Li, Ling-Ling & Liu, Yu-Wei & Liu, Jia-Qi & Li, Heng-Yi & Shen, Qiang, 2021. "Dynamic economic emission dispatch considering renewable energy generation: A novel multi-objective optimization approach," Energy, Elsevier, vol. 235(C).
    3. Huang, Yujing & Wang, Yudong & Liu, Nian, 2022. "Low-carbon economic dispatch and energy sharing method of multiple Integrated Energy Systems from the perspective of System of Systems," Energy, Elsevier, vol. 244(PA).
    4. Wu, Yanjuan & Wang, Caiwei & Wang, Yunliang, 2024. "Cooperative game optimization scheduling of multi-region integrated energy system based on ADMM algorithm," Energy, Elsevier, vol. 302(C).
    5. Miao, Ankang & Yuan, Yue & Wu, Han & Ma, Xin & Shao, Chenyu & Xiang, Sheng, 2024. "Pathway for China's provincial carbon emission peak: A case study of the Jiangsu Province," Energy, Elsevier, vol. 298(C).
    6. Yang, Yan-Shen & Xie, Bai-Chen & Tan, Xu, 2024. "Impact of green power trading mechanism on power generation and interregional transmission in China," Energy Policy, Elsevier, vol. 189(C).
    7. Wu, Qunli & Li, Chunxiang, 2023. "Modeling and operation optimization of hydrogen-based integrated energy system with refined power-to-gas and carbon-capture-storage technologies under carbon trading," Energy, Elsevier, vol. 270(C).
    8. Yan, Sizhe & Wang, Weiqing & Li, Xiaozhu & Zhao, Yi, 2022. "Research on a cross-regional robust trading strategy based on multiple market mechanisms," Energy, Elsevier, vol. 261(PB).
    9. Zhou, Zhou & Cai, Guotian & Huang, Yuping & Bai, Ruxue & Nie, Shuai & Chen, Xiaoyu, 2024. "Spatial and temporal evolution of cost-competitive offshore hydrogen in China: A techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    10. Qian, Tong & Tang, Wenhu & Wu, Qinghua, 2020. "A fully decentralized dual consensus method for carbon trading power dispatch with wind power," Energy, Elsevier, vol. 203(C).
    11. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    12. Zhao, Xiaoli & Chen, Haoran & Liu, Suwei & Ye, Xiaomei, 2020. "Economic & environmental effects of priority dispatch of renewable energy considering fluctuating power output of coal-fired units," Renewable Energy, Elsevier, vol. 157(C), pages 695-707.
    13. Mayyas Alsalman & Vian Ahmed & Zied Bahroun & Sara Saboor, 2023. "An Economic Analysis of Solar Energy Generation Policies in the UAE," Energies, MDPI, vol. 16(7), pages 1-25, March.
    14. Xiang, Yue & Guo, Yongtao & Wu, Gang & Liu, Junyong & Sun, Wei & Lei, Yutian & Zeng, Pingliang, 2022. "Low-carbon economic planning of integrated electricity-gas energy systems," Energy, Elsevier, vol. 249(C).
    15. Jia, Min & Zhang, Zhe & Zhang, Li & Zhao, Liang & Lu, Xinbo & Li, Linyan & Ruan, Jianhui & Wu, Yunlong & He, Zhuoming & Liu, Mei & Jiang, Lingling & Gao, Yajing & Wu, Pengcheng & Zhu, Shuying & Niu, M, 2024. "Optimization of electricity generation and assessment of provincial grid emission factors from 2020 to 2060 in China," Applied Energy, Elsevier, vol. 373(C).
    16. Tan, Qinliang & Han, Jian & Liu, Yuan, 2023. "Examining the synergistic diffusion process of carbon capture and renewable energy generation technologies under market environment: A multi-agent simulation analysis," Energy, Elsevier, vol. 282(C).
    17. Graham Smith & Edmund J. F. Dickinson, 2022. "Error, reproducibility and uncertainty in experiments for electrochemical energy technologies," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    18. Zheng Lu & Yunfei Chen & Qiaoqiao Fan, 2021. "Study on Feasibility of Photovoltaic Power to Grid Parity in China Based on LCOE," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
    19. Hongli Liu & Xiaoyu Yan & Jinhua Cheng & Jun Zhang & Yan Bu, 2021. "Driving Factors for the Spatiotemporal Heterogeneity in Technical Efficiency of China’s New Energy Industry," Energies, MDPI, vol. 14(14), pages 1-21, July.
    20. Zhu, Xiaoxun & Liu, Ruizhang & Chen, Yao & Gao, Xiaoxia & Wang, Yu & Xu, Zixu, 2021. "Wind speed behaviors feather analysis and its utilization on wind speed prediction using 3D-CNN," Energy, Elsevier, vol. 236(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224014476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.