IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v244y2022ipbs0360544222000305.html
   My bibliography  Save this article

Assessment and validation of wind power potential at convection-permitting resolution for the Caribbean region of Colombia

Author

Listed:
  • Gil Ruiz, Samuel Andrés
  • Cañón Barriga, Julio Eduardo
  • Martínez, J. Alejandro

Abstract

High-resolution wind power assessments, validated with ground data, are key for wind energy projects in regions of promising potential such as the Colombian Caribbean. This study assesses the annual wind power for this region at convection-permitting resolution, using the Weather Research and Forecasting (WRF) model with two nested domains (9 km and 3 km) and 50 vertical levels with 15 min outputs for the northern coast of South America. WRF simulations with three planetary boundary layer schemes (YSU, MYJ and QNSE) perform considerably better than ERA5 reanalysis at representing ground observations of near surface winds in the months with the strongest and weakest winds. WRF accurately simulates phase and amplitude of observed wind diurnal cycles, extreme values, and hodographs in terms of correlations, standard deviations, bias and Weibull distributions. The QNSE scheme served to validate the Wind Power Density (WPD) observed at ground stations, using variations of air density to improve the calculations. The assessment shows areas within the domain with WPD at 100 m up to 1200 Wm-2 onshore and 2000 Wm-2 offshore, with annual values above 400 Wm-2. In this regard, WRF provides a more detailed framework of the atmospheric dynamics for this part of the Caribbean region.

Suggested Citation

  • Gil Ruiz, Samuel Andrés & Cañón Barriga, Julio Eduardo & Martínez, J. Alejandro, 2022. "Assessment and validation of wind power potential at convection-permitting resolution for the Caribbean region of Colombia," Energy, Elsevier, vol. 244(PB).
  • Handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000305
    DOI: 10.1016/j.energy.2022.123127
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222000305
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walter Vergara & Alejandro Deeb & Natsuko Toba & Peter Cramton & Irene Leino, 2010. "Wind Energy in Colombia : A Framework for Market Entry," World Bank Publications - Books, The World Bank Group, number 2493.
    2. Al-Yahyai, Sultan & Charabi, Yassine & Gastli, Adel, 2010. "Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3192-3198, December.
    3. Gil Ruiz, Samuel Andrés & Barriga, Julio Eduardo Cañón & Martínez, J. Alejandro, 2021. "Wind power assessment in the Caribbean region of Colombia, using ten-minute wind observations and ERA5 data," Renewable Energy, Elsevier, vol. 172(C), pages 158-176.
    4. Costoya, X. & deCastro, M. & Santos, F. & Sousa, M.C. & Gómez-Gesteira, M., 2019. "Projections of wind energy resources in the Caribbean for the 21st century," Energy, Elsevier, vol. 178(C), pages 356-367.
    5. Giovanni Gualtieri, 2021. "Reliability of ERA5 Reanalysis Data for Wind Resource Assessment: A Comparison against Tall Towers," Energies, MDPI, vol. 14(14), pages 1-21, July.
    6. Mattar, Cristian & Borvarán, Dager, 2016. "Offshore wind power simulation by using WRF in the central coast of Chile," Renewable Energy, Elsevier, vol. 94(C), pages 22-31.
    7. Henao, Felipe & Viteri, Juan P. & Rodríguez, Yeny & Gómez, Juan & Dyner, Isaac, 2020. "Annual and interannual complementarities of renewable energy sources in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Ulazia, Alain & Sáenz, Jon & Ibarra-Berastegi, Gabriel & González-Rojí, Santos J. & Carreno-Madinabeitia, Sheila, 2019. "Global estimations of wind energy potential considering seasonal air density changes," Energy, Elsevier, vol. 187(C).
    9. Arslan, Talha & Bulut, Y. Murat & Altın Yavuz, Arzu, 2014. "Comparative study of numerical methods for determining Weibull parameters for wind energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 820-825.
    10. González-Alonso de Linaje, N. & Mattar, C. & Borvarán, D., 2019. "Quantifying the wind energy potential differences using different WRF initial conditions on Mediterranean coast of Chile," Energy, Elsevier, vol. 188(C).
    11. Olauson, Jon, 2018. "ERA5: The new champion of wind power modelling?," Renewable Energy, Elsevier, vol. 126(C), pages 322-331.
    12. Dayal, Kunal K. & Bellon, Gilles & Cater, John E. & Kingan, Michael J. & Sharma, Rajnish N., 2021. "High-resolution mesoscale wind-resource assessment of Fiji using the Weather Research and Forecasting (WRF) model," Energy, Elsevier, vol. 232(C).
    13. Salvação, N. & Guedes Soares, C., 2018. "Wind resource assessment offshore the Atlantic Iberian coast with the WRF model," Energy, Elsevier, vol. 145(C), pages 276-287.
    14. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "Sensitivity of the WRF model wind simulation and wind energy production estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula," Applied Energy, Elsevier, vol. 135(C), pages 234-246.
    15. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal," Applied Energy, Elsevier, vol. 117(C), pages 116-126.
    16. Rogier Floors & Morten Nielsen, 2019. "Estimating Air Density Using Observations and Re-Analysis Outputs for Wind Energy Purposes," Energies, MDPI, vol. 12(11), pages 1-12, May.
    17. Julián Urrego-Ortiz & J. Alejandro Martínez & Paola A. Arias & Álvaro Jaramillo-Duque, 2019. "Assessment and Day-Ahead Forecasting of Hourly Solar Radiation in Medellín, Colombia," Energies, MDPI, vol. 12(22), pages 1-29, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mi, Lihua & Shen, Lian & Han, Yan & Cai, C.S. & Zhou, Pinhan & Li, Kai, 2023. "Wind field simulation using WRF model in complex terrain: A sensitivity study with orthogonal design," Energy, Elsevier, vol. 285(C).
    2. José Vargas-Brochero & Sebastián Hurtado-Castillo & Jesús Altamiranda & Frederico Carlos M. de Menezes Filho & Alexandre Beluco & Fausto A. Canales, 2024. "Optimizing Renewable Energy Systems for Water Security: A Comparative Study of Reanalysis Models," Sustainability, MDPI, vol. 16(11), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gil Ruiz, Samuel Andrés & Barriga, Julio Eduardo Cañón & Martínez, J. Alejandro, 2021. "Wind power assessment in the Caribbean region of Colombia, using ten-minute wind observations and ERA5 data," Renewable Energy, Elsevier, vol. 172(C), pages 158-176.
    2. Gualtieri, G., 2022. "Analysing the uncertainties of reanalysis data used for wind resource assessment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Pedruzzi, Rizzieri & Silva, Allan Rodrigues & Soares dos Santos, Thalyta & Araujo, Allan Cavalcante & Cotta Weyll, Arthur Lúcide & Lago Kitagawa, Yasmin Kaore & Nunes da Silva Ramos, Diogo & Milani de, 2023. "Review of mapping analysis and complementarity between solar and wind energy sources," Energy, Elsevier, vol. 283(C).
    4. Alain Ulazia & Ander Nafarrate & Gabriel Ibarra-Berastegi & Jon Sáenz & Sheila Carreno-Madinabeitia, 2019. "The Consequences of Air Density Variations over Northeastern Scotland for Offshore Wind Energy Potential," Energies, MDPI, vol. 12(13), pages 1-18, July.
    5. Ulazia, Alain & Sáenz, Jon & Ibarra-Berastegi, Gabriel & González-Rojí, Santos J. & Carreno-Madinabeitia, Sheila, 2019. "Global estimations of wind energy potential considering seasonal air density changes," Energy, Elsevier, vol. 187(C).
    6. Tuy, Soklin & Lee, Han Soo & Chreng, Karodine, 2022. "Integrated assessment of offshore wind power potential using Weather Research and Forecast (WRF) downscaling with Sentinel-1 satellite imagery, optimal sites, annual energy production and equivalent C," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    7. Yang, Jaemo & Sengupta, Manajit & Xie, Yu & Shin, Hyeyum Hailey, 2023. "Developing a 20-year high-resolution wind data set for Puerto Rico," Energy, Elsevier, vol. 285(C).
    8. de Assis Tavares, Luiz Filipe & Shadman, Milad & Assad, Luiz Paulo de Freitas & Estefen, Segen F., 2022. "Influence of the WRF model and atmospheric reanalysis on the offshore wind resource potential and cost estimation: A case study for Rio de Janeiro State," Energy, Elsevier, vol. 240(C).
    9. Perini de Souza, Noele Bissoli & Sperandio Nascimento, Erick Giovani & Bandeira Santos, Alex Alisson & Moreira, Davidson Martins, 2022. "Wind mapping using the mesoscale WRF model in a tropical region of Brazil," Energy, Elsevier, vol. 240(C).
    10. Zhang, Shuangyi & Li, Xichen, 2021. "Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method," Energy, Elsevier, vol. 217(C).
    11. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2017. "Offshore winds and wind energy production estimates derived from ASCAT, OSCAT, numerical weather prediction models and buoys – A comparative study for the Iberian Peninsula Atlantic coast," Renewable Energy, Elsevier, vol. 102(PB), pages 433-444.
    12. González-Alonso de Linaje, N. & Mattar, C. & Borvarán, D., 2019. "Quantifying the wind energy potential differences using different WRF initial conditions on Mediterranean coast of Chile," Energy, Elsevier, vol. 188(C).
    13. Salvação, Nadia & Bentamy, Abderrahim & Guedes Soares, C., 2022. "Developing a new wind dataset by blending satellite data and WRF model wind predictions," Renewable Energy, Elsevier, vol. 198(C), pages 283-295.
    14. Salvação, N. & Guedes Soares, C., 2018. "Wind resource assessment offshore the Atlantic Iberian coast with the WRF model," Energy, Elsevier, vol. 145(C), pages 276-287.
    15. Costoya, X. & Rocha, A. & Carvalho, D., 2020. "Using bias-correction to improve future projections of offshore wind energy resource: A case study on the Iberian Peninsula," Applied Energy, Elsevier, vol. 262(C).
    16. Zhang, Jie & Draxl, Caroline & Hopson, Thomas & Monache, Luca Delle & Vanvyve, Emilie & Hodge, Bri-Mathias, 2015. "Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods," Applied Energy, Elsevier, vol. 156(C), pages 528-541.
    17. Alain Ulazia & Gabriel Ibarra-Berastegi & Jon Sáenz & Sheila Carreno-Madinabeitia & Santos J. González-Rojí, 2019. "Seasonal Correction of Offshore Wind Energy Potential due to Air Density: Case of the Iberian Peninsula," Sustainability, MDPI, vol. 11(13), pages 1-22, July.
    18. Milad Shadman & Mateo Roldan-Carvajal & Fabian G. Pierart & Pablo Alejandro Haim & Rodrigo Alonso & Corbiniano Silva & Andrés F. Osorio & Nathalie Almonacid & Griselda Carreras & Mojtaba Maali Amiri &, 2023. "A Review of Offshore Renewable Energy in South America: Current Status and Future Perspectives," Sustainability, MDPI, vol. 15(2), pages 1-34, January.
    19. Carreno-Madinabeitia, Sheila & Ibarra-Berastegi, Gabriel & Sáenz, Jon & Ulazia, Alain, 2021. "Long-term changes in offshore wind power density and wind turbine capacity factor in the Iberian Peninsula (1900–2010)," Energy, Elsevier, vol. 226(C).
    20. Boudia, Sidi Mohammed & Santos, João Andrade, 2019. "Assessment of large-scale wind resource features in Algeria," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.