IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v244y2022ipas0360544221029327.html
   My bibliography  Save this article

Production of low sulfur diesel-like fuel from crude oil wastes by pyrolytic distillation and its usage in a diesel engine

Author

Listed:
  • Uyar, Mahmut
  • Aydın, Hüseyin

Abstract

In the present study, a diesel-like fuel was produced from crude oil sludge with the method of catalytic pyrolysis. The initial liquid that was derived from the direct pyrolysis has considerably high sulfur content. Therefore it was subjected to two stage novel desulfurization methods. At the first stage the pyrolysis reactions were applied with perlite, CaO, Ca(OH)2 and zeolite catalysts. The sulfur content was reduced by 52.63% with using 10% perlite as the novel catalyst. As the second stage, in the acidic desulfurization reactions, the sulfur content of this liquid was reduced by 82.31% which means that the cumulative sulfur reduction was by 91.32%. At the end of both stages, low-sulfur diesel-like fuel (LSDLF) has 0.132% sulfur amount, highly similar to that of diesel fuel (DF) 0.1%. It was determined that the density and viscosity values of the LSDLF were close to those of DF, but its cetane number and heating values were slightly lower along with little higher sulfur content. The pure diesel-like fuel LSDLF100, its blend the LSDLF50 and the DF were tested in a single-cylinder and direct injection diesel engine. The engine performance characteristics and exhaust emission values obtained from these tests were comparatively examined. It was concluded that the obtained fuels can be used in diesel engines without any engine operations problems such as injector sticking, difficult start, overabundance noise, black smoke exhaust or any engine modifications.

Suggested Citation

  • Uyar, Mahmut & Aydın, Hüseyin, 2022. "Production of low sulfur diesel-like fuel from crude oil wastes by pyrolytic distillation and its usage in a diesel engine," Energy, Elsevier, vol. 244(PA).
  • Handle: RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221029327
    DOI: 10.1016/j.energy.2021.122683
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221029327
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122683?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Castillo Santiago, York & Martínez González, Aldemar & Venturini, Osvaldo José & Yepes Maya, Diego Mauricio, 2021. "Assessment of the energy recovery potential of oil sludge through gasification aiming electricity generation," Energy, Elsevier, vol. 215(PB).
    2. Azadi, Pooya & Inderwildi, Oliver R. & Farnood, Ramin & King, David A., 2013. "Liquid fuels, hydrogen and chemicals from lignin: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 506-523.
    3. Ramadhas, A.S & Jayaraj, S & Muraleedharan, C, 2004. "Use of vegetable oils as I.C. engine fuels—A review," Renewable Energy, Elsevier, vol. 29(5), pages 727-742.
    4. Mazzoni, Luca & Janajreh, Isam & Elagroudy, Sherien & Ghenai, Chaouki, 2020. "Modeling of plasma and entrained flow co-gasification of MSW and petroleum sludge," Energy, Elsevier, vol. 196(C).
    5. Senthil Kumar, M. & Kerihuel, A. & Bellettre, J. & Tazerout, M., 2005. "Experimental investigations on the use of preheated animal fat as fuel in a compression ignition engine," Renewable Energy, Elsevier, vol. 30(9), pages 1443-1456.
    6. Pugazhvadivu, M. & Jeyachandran, K., 2005. "Investigations on the performance and exhaust emissions of a diesel engine using preheated waste frying oil as fuel," Renewable Energy, Elsevier, vol. 30(14), pages 2189-2202.
    7. Cheng, Shuo & Wang, Yuhua & Fumitake, Takahashi & Kouji, Tokimatsu & Li, Aimin & Kunio, Yoshikawa, 2017. "Effect of steam and oil sludge ash additive on the products of oil sludge pyrolysis," Applied Energy, Elsevier, vol. 185(P1), pages 146-157.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmadi, Pouria & Raeesi, Mehrdad & Changizian, Sina & Teimouri, Aidin & Khoshnevisan, Alireza, 2022. "Lifecycle assessment of diesel, diesel-electric and hydrogen fuel cell transit buses with fuel cell degradation and battery aging using machine learning techniques," Energy, Elsevier, vol. 259(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiaoling & Zhang, Yongxing & Xu, Baoshen & Li, Yifan, 2022. "A simple model for estimation of higher heating value of oily sludge," Energy, Elsevier, vol. 239(PA).
    2. Kim, Hwanam & Choi, Byungchul, 2010. "The effect of biodiesel and bioethanol blended diesel fuel on nanoparticles and exhaust emissions from CRDI diesel engine," Renewable Energy, Elsevier, vol. 35(1), pages 157-163.
    3. Capuano, D. & Costa, M. & Di Fraia, S. & Massarotti, N. & Vanoli, L., 2017. "Direct use of waste vegetable oil in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 759-770.
    4. Duarte Souza Alvarenga Santos, Nathália & Rückert Roso, Vinícius & Teixeira Malaquias, Augusto César & Coelho Baêta, José Guilherme, 2021. "Internal combustion engines and biofuels: Examining why this robust combination should not be ignored for future sustainable transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Sharon, H. & Karuppasamy, K. & Soban Kumar, D.R. & Sundaresan, A., 2012. "A test on DI diesel engine fueled with methyl esters of used palm oil," Renewable Energy, Elsevier, vol. 47(C), pages 160-166.
    6. Senthil Kumar, T. & Senthil Kumar, P. & Annamalai, K., 2015. "Experimental study on the performance and emission measures of direct injection diesel engine with Kapok methyl ester and its blends," Renewable Energy, Elsevier, vol. 74(C), pages 903-909.
    7. Di Fraia, S. & Massarotti, N. & Vanoli, L. & Costa, M., 2016. "Thermo-economic analysis of a novel cogeneration system for sewage sludge treatment," Energy, Elsevier, vol. 115(P3), pages 1560-1571.
    8. Castillo Santiago, York & Martínez González, Aldemar & Venturini, Osvaldo J. & Sphaier, Leandro A. & Ocampo Batlle, Eric A., 2022. "Energetic and environmental assessment of oil sludge use in a gasifier/gas microturbine system," Energy, Elsevier, vol. 244(PB).
    9. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    10. Melo-Espinosa, Eliezer Ahmed & Piloto-Rodríguez, Ramón & Goyos-Pérez, Leonardo & Sierens, Roger & Verhelst, Sebastian, 2015. "Emulsification of animal fats and vegetable oils for their use as a diesel engine fuel: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 623-633.
    11. Matteo Borella & Alessandro A. Casazza & Gabriella Garbarino & Paola Riani & Guido Busca, 2022. "A Study of the Pyrolysis Products of Kraft Lignin," Energies, MDPI, vol. 15(3), pages 1-15, January.
    12. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
    13. Tsai, Wen-Tien & Lin, Chih-Chung & Yeh, Ching-Wei, 2007. "An analysis of biodiesel fuel from waste edible oil in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 838-857, June.
    14. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    15. Perumal, Varatharaju & Ilangkumaran, M., 2018. "Water emulsified hybrid pongamia biodiesel as a modified fuel for the experimental analysis of performance, combustion and emission characteristics of a direct injection diesel engine," Renewable Energy, Elsevier, vol. 121(C), pages 623-631.
    16. Wong, Ka In & Wong, Pak Kin & Cheung, Chun Shun & Vong, Chi Man, 2013. "Modeling and optimization of biodiesel engine performance using advanced machine learning methods," Energy, Elsevier, vol. 55(C), pages 519-528.
    17. Erdoğan, Sinan & Balki, Mustafa Kemal & Aydın, Selman & Sayın, Cenk, 2020. "Performance, emission and combustion characteristic assessment of biodiesels derived from beef bone marrow in a diesel generator," Energy, Elsevier, vol. 207(C).
    18. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    19. Simona Di Fraia & M. Rakib Uddin, 2022. "Energy Recovery from Waste Paper and Deinking Sludge to Support the Demand of the Paper Industry: A Numerical Analysis," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    20. Ramadhas, A.S. & Jayaraj, S. & Muraleedharan, C., 2005. "Characterization and effect of using rubber seed oil as fuel in the compression ignition engines," Renewable Energy, Elsevier, vol. 30(5), pages 795-803.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221029327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.