IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v242y2022ics0360544221032205.html
   My bibliography  Save this article

Physical, geographical, technical, and economic potential for the optimal configuration of photovoltaic systems using a digital surface model and optimization method

Author

Listed:
  • Sredenšek, Klemen
  • Štumberger, Bojan
  • Hadžiselimović, Miralem
  • Mavsar, Primož
  • Seme, Sebastijan

Abstract

The main objective of this paper is to present a novel approach for determining PV potential through an optimization method. The novel approach considers the importance of technical and economic potential simultaneously for determining the optimal configuration of PV systems using a digital surface model. The integration of photovoltaic systems is conditioned mainly by the location and type of installation - configuration. Thus, more and more photovoltaic systems are being integrated into urban areas. For the further successful integration of photovoltaic systems into networks and the successful establishment of appropriate policies and directives, it is essential to properly assess the photovoltaic potential. Based on the described methodology, the potential determination is made for a completed area of 75,537 m2 using a digital surface model of the observed area. The annual values of physical, geographical, technical, and economic potentials were 19.57 GWh, 7.54 GWh, 875.50 MWh, and 19.64 kWh, respectively. The methodologies presented in the paper are based on detailed meteorological data for 20 years, a digital surface model of the observed area, a novel optimization approach, and multi-year data of electricity prices on markets. The presented results can be an excellent basis for further analyzes of determining the photovoltaic potential.

Suggested Citation

  • Sredenšek, Klemen & Štumberger, Bojan & Hadžiselimović, Miralem & Mavsar, Primož & Seme, Sebastijan, 2022. "Physical, geographical, technical, and economic potential for the optimal configuration of photovoltaic systems using a digital surface model and optimization method," Energy, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032205
    DOI: 10.1016/j.energy.2021.122971
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221032205
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122971?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Byrne, John & Taminiau, Job & Kurdgelashvili, Lado & Kim, Kyung Nam, 2015. "A review of the solar city concept and methods to assess rooftop solar electric potential, with an illustrative application to the city of Seoul," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 830-844.
    2. Lazzeroni, Paolo & Moretti, Francesco & Stirano, Federico, 2020. "Economic potential of PV for Italian residential end-users," Energy, Elsevier, vol. 200(C).
    3. Walch, Alina & Castello, Roberto & Mohajeri, Nahid & Scartezzini, Jean-Louis, 2020. "Big data mining for the estimation of hourly rooftop photovoltaic potential and its uncertainty," Applied Energy, Elsevier, vol. 262(C).
    4. Diane Palmer & Elena Koumpli & Ian Cole & Ralph Gottschalg & Thomas Betts, 2018. "A GIS-Based Method for Identification of Wide Area Rooftop Suitability for Minimum Size PV Systems Using LiDAR Data and Photogrammetry," Energies, MDPI, vol. 11(12), pages 1-22, December.
    5. Lukač, Niko & Seme, Sebastijan & Dežan, Katarina & Žalik, Borut & Štumberger, Gorazd, 2016. "Economic and environmental assessment of rooftops regarding suitability for photovoltaic systems installation based on remote sensing data," Energy, Elsevier, vol. 107(C), pages 854-865.
    6. Kurdgelashvili, Lado & Li, Junli & Shih, Cheng-Hao & Attia, Benjamin, 2016. "Estimating technical potential for rooftop photovoltaics in California, Arizona and New Jersey," Renewable Energy, Elsevier, vol. 95(C), pages 286-302.
    7. Ermolenko, Boris V. & Ermolenko, Georgy V. & Fetisova, Yulia A. & Proskuryakova, Liliana N., 2017. "Wind and solar PV technical potentials: Measurement methodology and assessments for Russia," Energy, Elsevier, vol. 137(C), pages 1001-1012.
    8. Suomalainen, Kiti & Wang, Vincent & Sharp, Basil, 2017. "Rooftop solar potential based on LiDAR data: Bottom-up assessment at neighbourhood level," Renewable Energy, Elsevier, vol. 111(C), pages 463-475.
    9. Wong, Man Sing & Zhu, Rui & Liu, Zhizhao & Lu, Lin & Peng, Jinqing & Tang, Zhaoqin & Lo, Chung Ho & Chan, Wai Ki, 2016. "Estimation of Hong Kong’s solar energy potential using GIS and remote sensing technologies," Renewable Energy, Elsevier, vol. 99(C), pages 325-335.
    10. Mendis, Thushini & Huang, Zhaojian & Xu, Shen & Zhang, Weirong, 2020. "Economic potential analysis of photovoltaic integrated shading strategies on commercial building facades in urban blocks: A case study of Colombo, Sri Lanka," Energy, Elsevier, vol. 194(C).
    11. Buffat, René & Grassi, Stefano & Raubal, Martin, 2018. "A scalable method for estimating rooftop solar irradiation potential over large regions," Applied Energy, Elsevier, vol. 216(C), pages 389-401.
    12. Peng, Jinqing & Lu, Lin, 2013. "Investigation on the development potential of rooftop PV system in Hong Kong and its environmental benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 149-162.
    13. Srećković, Nevena & Lukač, Niko & Žalik, Borut & Štumberger, Gorazd, 2016. "Determining roof surfaces suitable for the installation of PV (photovoltaic) systems, based on LiDAR (Light Detection And Ranging) data, pyranometer measurements, and distribution network configuratio," Energy, Elsevier, vol. 96(C), pages 404-414.
    14. Xin-gang, Zhao & Yi-min, Xie, 2019. "The economic performance of industrial and commercial rooftop photovoltaic in China," Energy, Elsevier, vol. 187(C).
    15. Khan, Jibran & Arsalan, Mudassar Hassan, 2016. "Estimation of rooftop solar photovoltaic potential using geo-spatial techniques: A perspective from planned neighborhood of Karachi – Pakistan," Renewable Energy, Elsevier, vol. 90(C), pages 188-203.
    16. Lukač, Niko & Seme, Sebastijan & Žlaus, Danijel & Štumberger, Gorazd & Žalik, Borut, 2014. "Buildings roofs photovoltaic potential assessment based on LiDAR (Light Detection And Ranging) data," Energy, Elsevier, vol. 66(C), pages 598-609.
    17. Assouline, Dan & Mohajeri, Nahid & Scartezzini, Jean-Louis, 2018. "Large-scale rooftop solar photovoltaic technical potential estimation using Random Forests," Applied Energy, Elsevier, vol. 217(C), pages 189-211.
    18. Ko, Li & Wang, Jen-Chun & Chen, Chia-Yon & Tsai, Hsing-Yeh, 2015. "Evaluation of the development potential of rooftop solar photovoltaic in Taiwan," Renewable Energy, Elsevier, vol. 76(C), pages 582-595.
    19. Bódis, Katalin & Kougias, Ioannis & Jäger-Waldau, Arnulf & Taylor, Nigel & Szabó, Sándor, 2019. "A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    20. Xiaoyang Song & Yaohuan Huang & Chuanpeng Zhao & Yuxin Liu & Yanguo Lu & Yongguo Chang & Jie Yang, 2018. "An Approach for Estimating Solar Photovoltaic Potential Based on Rooftop Retrieval from Remote Sensing Images," Energies, MDPI, vol. 11(11), pages 1-14, November.
    21. Jacques, David A. & Gooding, James & Giesekam, Jannik J. & Tomlin, Alison S. & Crook, Rolf, 2014. "Methodology for the assessment of PV capacity over a city region using low-resolution LiDAR data and application to the City of Leeds (UK)," Applied Energy, Elsevier, vol. 124(C), pages 28-34.
    22. Lee, Minhyun & Hong, Taehoon & Jeong, Jaewook & Jeong, Kwangbok, 2018. "Development of a rooftop solar photovoltaic rating system considering the technical and economic suitability criteria at the building level," Energy, Elsevier, vol. 160(C), pages 213-224.
    23. Primož Mavsar & Klemen Sredenšek & Bojan Štumberger & Miralem Hadžiselimović & Sebastijan Seme, 2019. "Simplified Method for Analyzing the Availability of Rooftop Photovoltaic Potential," Energies, MDPI, vol. 12(22), pages 1-17, November.
    24. Miranda, Raul F.C. & Szklo, Alexandre & Schaeffer, Roberto, 2015. "Technical-economic potential of PV systems on Brazilian rooftops," Renewable Energy, Elsevier, vol. 75(C), pages 694-713.
    25. Phuong Minh Khuong & Russell McKenna & Wolf Fichtner, 2020. "A Cost-Effective and Transferable Methodology for Rooftop PV Potential Assessment in Developing Countries," Energies, MDPI, vol. 13(10), pages 1-46, May.
    26. Cheng, Liang & Zhang, Fangli & Li, Shuyi & Mao, Junya & Xu, Hao & Ju, Weimin & Liu, Xiaoqiang & Wu, Jie & Min, Kaifu & Zhang, Xuedong & Li, Manchun, 2020. "Solar energy potential of urban buildings in 10 cities of China," Energy, Elsevier, vol. 196(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Hanwei & Shen, Jieling & Yip, Hin-Lap & Fang, Mandy Meng & Dong, Liang, 2024. "Unleashing the green potential: Assessing Hong Kong's building solar PV capacity," Applied Energy, Elsevier, vol. 369(C).
    2. Chen, Xie & Mao, Hongzhi & Cheng, Nan & Ma, Ling & Tian, Zhiyong & Luo, Yongqiang & Zhou, Chaohui & Li, Huai & Wang, Qian & Kong, Weiqiang & Fan, Jianhua, 2024. "Climate change impacts on global photovoltaic variability," Applied Energy, Elsevier, vol. 374(C).
    3. Lukač, Niko & Mongus, Domen & Žalik, Borut & Štumberger, Gorazd & Bizjak, Marko, 2024. "Novel GPU-accelerated high-resolution solar potential estimation in urban areas by using a modified diffuse irradiance model," Applied Energy, Elsevier, vol. 353(PA).
    4. Enrique Fuster-Palop & Carlos Prades-Gil & Ximo Masip & J. D. Viana-Fons & Jorge Payá, 2023. "Techno-Economic Potential of Urban Photovoltaics: Comparison of Net Billing and Net Metering in a Mediterranean Municipality," Energies, MDPI, vol. 16(8), pages 1-32, April.
    5. Liu, Jiang & Wu, Qifeng & Lin, Zhipeng & Shi, Huijie & Wen, Shaoyang & Wu, Qiaoyu & Zhang, Junxue & Peng, Changhai, 2023. "A novel approach for assessing rooftop-and-facade solar photovoltaic potential in rural areas using three-dimensional (3D) building models constructed with GIS," Energy, Elsevier, vol. 282(C).
    6. Lodhi, Muhammad Kamran & Tan, Yumin & Wang, Xiaolu & Masum, Syed Muhammad & Nouman, Khan Muhammad & Ullah, Nasim, 2024. "Harnessing rooftop solar photovoltaic potential in Islamabad, Pakistan: A remote sensing and deep learning approach," Energy, Elsevier, vol. 304(C).
    7. Sun, Tao & Shan, Ming & Rong, Xing & Yang, Xudong, 2022. "Estimating the spatial distribution of solar photovoltaic power generation potential on different types of rural rooftops using a deep learning network applied to satellite images," Applied Energy, Elsevier, vol. 315(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Primož Mavsar & Klemen Sredenšek & Bojan Štumberger & Miralem Hadžiselimović & Sebastijan Seme, 2019. "Simplified Method for Analyzing the Availability of Rooftop Photovoltaic Potential," Energies, MDPI, vol. 12(22), pages 1-17, November.
    2. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    3. Elham Fakhraian & Marc Alier & Francesc Valls Dalmau & Alireza Nameni & Maria José Casañ Guerrero, 2021. "The Urban Rooftop Photovoltaic Potential Determination," Sustainability, MDPI, vol. 13(13), pages 1-18, July.
    4. Aslani, Mohammad & Seipel, Stefan, 2022. "Automatic identification of utilizable rooftop areas in digital surface models for photovoltaics potential assessment," Applied Energy, Elsevier, vol. 306(PA).
    5. Lee, Minhyun & Hong, Taehoon & Jeong, Kwangbok & Kim, Jimin, 2018. "A bottom-up approach for estimating the economic potential of the rooftop solar photovoltaic system considering the spatial and temporal diversity," Applied Energy, Elsevier, vol. 232(C), pages 640-656.
    6. Sebastian Krapf & Nils Kemmerzell & Syed Khawaja Haseeb Uddin & Manuel Hack Vázquez & Fabian Netzler & Markus Lienkamp, 2021. "Towards Scalable Economic Photovoltaic Potential Analysis Using Aerial Images and Deep Learning," Energies, MDPI, vol. 14(13), pages 1-22, June.
    7. Gomez-Exposito, Antonio & Arcos-Vargas, Angel & Gutierrez-Garcia, Francisco, 2020. "On the potential contribution of rooftop PV to a sustainable electricity mix: The case of Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    8. Mao, Hongzhi & Chen, Xie & Luo, Yongqiang & Deng, Jie & Tian, Zhiyong & Yu, Jinghua & Xiao, Yimin & Fan, Jianhua, 2023. "Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    9. Dehwah, Ammar H.A. & Asif, Muhammad, 2019. "Assessment of net energy contribution to buildings by rooftop photovoltaic systems in hot-humid climates," Renewable Energy, Elsevier, vol. 131(C), pages 1288-1299.
    10. Liang, Hanwei & Shen, Jieling & Yip, Hin-Lap & Fang, Mandy Meng & Dong, Liang, 2024. "Unleashing the green potential: Assessing Hong Kong's building solar PV capacity," Applied Energy, Elsevier, vol. 369(C).
    11. Suntiti Yoomak & Theerasak Patcharoen & Atthapol Ngaopitakkul, 2019. "Performance and Economic Evaluation of Solar Rooftop Systems in Different Regions of Thailand," Sustainability, MDPI, vol. 11(23), pages 1-20, November.
    12. Ding, Feng & Yang, Jianping & Zhou, Zan, 2023. "Economic profits and carbon reduction potential of photovoltaic power generation for China's high-speed railway infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    13. Walch, Alina & Castello, Roberto & Mohajeri, Nahid & Scartezzini, Jean-Louis, 2020. "Big data mining for the estimation of hourly rooftop photovoltaic potential and its uncertainty," Applied Energy, Elsevier, vol. 262(C).
    14. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    15. Guglielmina Mutani & Valeria Todeschi, 2021. "Optimization of Costs and Self-Sufficiency for Roof Integrated Photovoltaic Technologies on Residential Buildings," Energies, MDPI, vol. 14(13), pages 1-25, July.
    16. Liu, Jiang & Wu, Qifeng & Lin, Zhipeng & Shi, Huijie & Wen, Shaoyang & Wu, Qiaoyu & Zhang, Junxue & Peng, Changhai, 2023. "A novel approach for assessing rooftop-and-facade solar photovoltaic potential in rural areas using three-dimensional (3D) building models constructed with GIS," Energy, Elsevier, vol. 282(C).
    17. Assouline, Dan & Mohajeri, Nahid & Scartezzini, Jean-Louis, 2018. "Large-scale rooftop solar photovoltaic technical potential estimation using Random Forests," Applied Energy, Elsevier, vol. 217(C), pages 189-211.
    18. Hannes Koch & Stefan Lechner & Sebastian Erdmann & Martin Hofmann, 2022. "Assessing the Potential of Rooftop Photovoltaics by Processing High-Resolution Irradiation Data, as Applied to Giessen, Germany," Energies, MDPI, vol. 15(19), pages 1-17, September.
    19. Bódis, Katalin & Kougias, Ioannis & Jäger-Waldau, Arnulf & Taylor, Nigel & Szabó, Sándor, 2019. "A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    20. Abdullah Shaher & Saad Alqahtani & Ali Garada & Liana Cipcigan, 2023. "Rooftop Solar Photovoltaic in Saudi Arabia to Supply Electricity Demand in Localised Urban Areas: A Study of the City of Abha," Energies, MDPI, vol. 16(11), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.