IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v216y2023ics0960148123009369.html
   My bibliography  Save this article

SPAN: An open-source plugin for photovoltaic potential estimation of individual roof segments using point cloud data

Author

Listed:
  • Özdemir, Samed
  • Yavuzdoğan, Ahmet
  • Bilgilioğlu, Burhan Baha
  • Akbulut, Zeynep

Abstract

Decentralized solar PhotoVoltaic (PV) is one of the most promising energy sources for cities and individuals pursuing energy self-sufficiency. Especially, the already available rooftop surfaces are a major contributor to push for rooftop mounted PV systems. However, accurate PV potential estimation of individual buildings is still a challenging task since many parameters must be considered such as meteorological factors, panel technology, geographical location, available roof surface area, surface azimuth and tilt angle. In this study, we created an efficient approach that can be used for roof surface's PV potential estimation based on point cloud data and capable of processing various scales from single building to city scale. In the proposed approach, each roof surface's features were utilized for PV potential estimation by employing the PVGIS database. PV potential estimation was carried out on daily, monthly, and annual periods to provide a better estimation. Also, we developed a flexible and easy to use open-source plugin based on the QGIS software for rooftop mounted PV potential estimation capable of estimating every roof surface's PV potential. The method was tested on 80 buildings selected from ROOFN3D dataset. The proposed approach achieved an overall accuracy of 84% and an F1 score of 0.92.

Suggested Citation

  • Özdemir, Samed & Yavuzdoğan, Ahmet & Bilgilioğlu, Burhan Baha & Akbulut, Zeynep, 2023. "SPAN: An open-source plugin for photovoltaic potential estimation of individual roof segments using point cloud data," Renewable Energy, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:renene:v:216:y:2023:i:c:s0960148123009369
    DOI: 10.1016/j.renene.2023.119022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123009369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Uchman, Wojciech & Kotowicz, Janusz & Sekret, Robert, 2022. "Investigation on green hydrogen generation devices dedicated for integrated renewable energy farm: Solar and wind," Applied Energy, Elsevier, vol. 328(C).
    2. Zhong, Qing & Nelson, Jake R. & Tong, Daoqin & Grubesic, Tony H., 2022. "A spatial optimization approach to increase the accuracy of rooftop solar energy assessments," Applied Energy, Elsevier, vol. 316(C).
    3. Ren, Haoshan & Xu, Chengliang & Ma, Zhenjun & Sun, Yongjun, 2022. "A novel 3D-geographic information system and deep learning integrated approach for high-accuracy building rooftop solar energy potential characterization of high-density cities," Applied Energy, Elsevier, vol. 306(PA).
    4. Xiaoyang Song & Yaohuan Huang & Chuanpeng Zhao & Yuxin Liu & Yanguo Lu & Yongguo Chang & Jie Yang, 2018. "An Approach for Estimating Solar Photovoltaic Potential Based on Rooftop Retrieval from Remote Sensing Images," Energies, MDPI, vol. 11(11), pages 1-14, November.
    5. Zhong, Teng & Zhang, Zhixin & Chen, Min & Zhang, Kai & Zhou, Zixuan & Zhu, Rui & Wang, Yijie & Lü, Guonian & Yan, Jinyue, 2021. "A city-scale estimation of rooftop solar photovoltaic potential based on deep learning," Applied Energy, Elsevier, vol. 298(C).
    6. Yildirim, Deniz & Büyüksalih, Gürcan & Şahin, Ahmet Duran, 2021. "Rooftop photovoltaic potential in Istanbul: Calculations based on LiDAR data, measurements and verifications," Applied Energy, Elsevier, vol. 304(C).
    7. Yang, Xi & Pang, Jun & Teng, Fei & Gong, Ruixin & Springer, Cecilia, 2021. "The environmental co-benefit and economic impact of China's low-carbon pathways: Evidence from linking bottom-up and top-down models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    8. Victoria Stack & Lana L. Narine, 2022. "Sustainability at Auburn University: Assessing Rooftop Solar Energy Potential for Electricity Generation with Remote Sensing and GIS in a Southern US Campus," Sustainability, MDPI, vol. 14(2), pages 1-14, January.
    9. Huang, Zhaojian & Mendis, Thushini & Xu, Shen, 2019. "Urban solar utilization potential mapping via deep learning technology: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 250(C), pages 283-291.
    10. Hofierka, Jaroslav & Kaňuk, Ján, 2009. "Assessment of photovoltaic potential in urban areas using open-source solar radiation tools," Renewable Energy, Elsevier, vol. 34(10), pages 2206-2214.
    11. Psiloglou, B.E. & Kambezidis, H.D. & Kaskaoutis, D.G. & Karagiannis, D. & Polo, J.M., 2020. "Comparison between MRM simulations, CAMS and PVGIS databases with measured solar radiation components at the Methoni station, Greece," Renewable Energy, Elsevier, vol. 146(C), pages 1372-1391.
    12. Krebs-Moberg, Miles & Pitz, Mandy & Dorsette, Tiara L. & Gheewala, Shabbir H., 2021. "Third generation of photovoltaic panels: A life cycle assessment," Renewable Energy, Elsevier, vol. 164(C), pages 556-565.
    13. Wong, Man Sing & Zhu, Rui & Liu, Zhizhao & Lu, Lin & Peng, Jinqing & Tang, Zhaoqin & Lo, Chung Ho & Chan, Wai Ki, 2016. "Estimation of Hong Kong’s solar energy potential using GIS and remote sensing technologies," Renewable Energy, Elsevier, vol. 99(C), pages 325-335.
    14. Nima Narjabadifam & Mohammed Al-Saffar & Yongquan Zhang & Joseph Nofech & Asdrubal Cheng Cen & Hadia Awad & Michael Versteege & Mustafa Gül, 2022. "Framework for Mapping and Optimizing the Solar Rooftop Potential of Buildings in Urban Systems," Energies, MDPI, vol. 15(5), pages 1-32, February.
    15. Lukač, Niko & Seme, Sebastijan & Žlaus, Danijel & Štumberger, Gorazd & Žalik, Borut, 2014. "Buildings roofs photovoltaic potential assessment based on LiDAR (Light Detection And Ranging) data," Energy, Elsevier, vol. 66(C), pages 598-609.
    16. Bódis, Katalin & Kougias, Ioannis & Jäger-Waldau, Arnulf & Taylor, Nigel & Szabó, Sándor, 2019. "A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    17. Sun, Tao & Shan, Ming & Rong, Xing & Yang, Xudong, 2022. "Estimating the spatial distribution of solar photovoltaic power generation potential on different types of rural rooftops using a deep learning network applied to satellite images," Applied Energy, Elsevier, vol. 315(C).
    18. Lukač, Niko & Žlaus, Danijel & Seme, Sebastijan & Žalik, Borut & Štumberger, Gorazd, 2013. "Rating of roofs’ surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data," Applied Energy, Elsevier, vol. 102(C), pages 803-812.
    19. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    2. Mao, Hongzhi & Chen, Xie & Luo, Yongqiang & Deng, Jie & Tian, Zhiyong & Yu, Jinghua & Xiao, Yimin & Fan, Jianhua, 2023. "Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    3. Jiang, Hou & Zhang, Xiaotong & Yao, Ling & Lu, Ning & Qin, Jun & Liu, Tang & Zhou, Chenghu, 2023. "High-resolution analysis of rooftop photovoltaic potential based on hourly generation simulations and load profiles," Applied Energy, Elsevier, vol. 348(C).
    4. Sun, Tao & Shan, Ming & Rong, Xing & Yang, Xudong, 2022. "Estimating the spatial distribution of solar photovoltaic power generation potential on different types of rural rooftops using a deep learning network applied to satellite images," Applied Energy, Elsevier, vol. 315(C).
    5. Elham Fakhraian & Marc Alier & Francesc Valls Dalmau & Alireza Nameni & Maria José Casañ Guerrero, 2021. "The Urban Rooftop Photovoltaic Potential Determination," Sustainability, MDPI, vol. 13(13), pages 1-18, July.
    6. Liu, Jiang & Wu, Qifeng & Lin, Zhipeng & Shi, Huijie & Wen, Shaoyang & Wu, Qiaoyu & Zhang, Junxue & Peng, Changhai, 2023. "A novel approach for assessing rooftop-and-facade solar photovoltaic potential in rural areas using three-dimensional (3D) building models constructed with GIS," Energy, Elsevier, vol. 282(C).
    7. Sredenšek, Klemen & Štumberger, Bojan & Hadžiselimović, Miralem & Mavsar, Primož & Seme, Sebastijan, 2022. "Physical, geographical, technical, and economic potential for the optimal configuration of photovoltaic systems using a digital surface model and optimization method," Energy, Elsevier, vol. 242(C).
    8. Žalik, Mitja & Mongus, Domen & Lukač, Niko, 2024. "High-resolution spatiotemporal assessment of solar potential from remote sensing data using deep learning," Renewable Energy, Elsevier, vol. 222(C).
    9. Molnár, Gergely & Cabeza, Luisa F. & Chatterjee, Souran & Ürge-Vorsatz, Diana, 2024. "Modelling the building-related photovoltaic power production potential in the light of the EU's Solar Rooftop Initiative," Applied Energy, Elsevier, vol. 360(C).
    10. Zhang, Chen & Li, Zhixin & Jiang, Haihua & Luo, Yongqiang & Xu, Shen, 2021. "Deep learning method for evaluating photovoltaic potential of urban land-use: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 283(C).
    11. Lukač, Niko & Seme, Sebastijan & Dežan, Katarina & Žalik, Borut & Štumberger, Gorazd, 2016. "Economic and environmental assessment of rooftops regarding suitability for photovoltaic systems installation based on remote sensing data," Energy, Elsevier, vol. 107(C), pages 854-865.
    12. Primož Mavsar & Klemen Sredenšek & Bojan Štumberger & Miralem Hadžiselimović & Sebastijan Seme, 2019. "Simplified Method for Analyzing the Availability of Rooftop Photovoltaic Potential," Energies, MDPI, vol. 12(22), pages 1-17, November.
    13. Sebastian Krapf & Nils Kemmerzell & Syed Khawaja Haseeb Uddin & Manuel Hack Vázquez & Fabian Netzler & Markus Lienkamp, 2021. "Towards Scalable Economic Photovoltaic Potential Analysis Using Aerial Images and Deep Learning," Energies, MDPI, vol. 14(13), pages 1-22, June.
    14. Yildirim, Deniz & Büyüksalih, Gürcan & Şahin, Ahmet Duran, 2021. "Rooftop photovoltaic potential in Istanbul: Calculations based on LiDAR data, measurements and verifications," Applied Energy, Elsevier, vol. 304(C).
    15. Wei, Tianxi & Zhang, Yi & Zhang, Yuhang & Miao, Rui & Kang, Jian & Qi, He, 2024. "City-scale roof-top photovoltaic deployment planning," Applied Energy, Elsevier, vol. 368(C).
    16. Aslani, Mohammad & Seipel, Stefan, 2022. "Automatic identification of utilizable rooftop areas in digital surface models for photovoltaics potential assessment," Applied Energy, Elsevier, vol. 306(PA).
    17. Salim, Daniel Henrique Carneiro & de Sousa Mello, Caio César & Franco, Guilherme Gandra & de Albuquerque Nóbrega, Rodrigo Affonso & de Paula, Eduardo Coutinho & Fonseca, Bráulio Magalhães & Nero, Marc, 2023. "Unveiling Fernando de Noronha Island's photovoltaic potential with unmanned aerial survey and irradiation modeling," Applied Energy, Elsevier, vol. 337(C).
    18. Ren, Haoshan & Xu, Chengliang & Ma, Zhenjun & Sun, Yongjun, 2022. "A novel 3D-geographic information system and deep learning integrated approach for high-accuracy building rooftop solar energy potential characterization of high-density cities," Applied Energy, Elsevier, vol. 306(PA).
    19. Jiang, Hou & Yao, Ling & Lu, Ning & Qin, Jun & Zhang, Xiaotong & Liu, Tang & Zhang, Xingxing & Zhou, Chenghu, 2024. "Exploring the optimization of rooftop photovoltaic scale and spatial layout under curtailment constraints," Energy, Elsevier, vol. 293(C).
    20. Assouline, Dan & Mohajeri, Nahid & Scartezzini, Jean-Louis, 2018. "Large-scale rooftop solar photovoltaic technical potential estimation using Random Forests," Applied Energy, Elsevier, vol. 217(C), pages 189-211.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:216:y:2023:i:c:s0960148123009369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.