IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v216y2018icp389-401.html
   My bibliography  Save this article

A scalable method for estimating rooftop solar irradiation potential over large regions

Author

Listed:
  • Buffat, René
  • Grassi, Stefano
  • Raubal, Martin

Abstract

An estimate of solar irradiation potential over large regions requires the knowledge of the long-term spatio-temporal distribution of the solar radiation as well as the identification of the suitable surfaces where the photovoltaic (PV) installations can be built. These main components can be modelled in different ways and are thus affected by different sources of uncertainty. Thus, when estimating the exploitable potential over large regions, it is important to measure the accuracy of the entire process. In this work, we provide a generic method to estimate the solar irradiation potential of rooftops over large regions and an estimate of the corresponding uncertainties when calculating the long-term electricity generation of PV plants. This method uses satellite based solar radiation data covering a period of 22 years, with a temporal resolution of 30 min and a spatial resolution of 3.8–5.6 km. Suitable surfaces on rooftops are identified using Digital Surface Models combined with building footprints. This allows to determine the geometry of rooftops, such as slope, and orientation with a spatial resolution of 0.5 m. Finally, we calculated the electricity generation based on models which take into account all characteristics of PV system components. In order to estimate the accuracy of the model for electricity production, we compared the monthly generation of 500 PV plants in Switzerland consisting of different PV technologies (mono-crystalline, poly-crystalline and thin film) with the estimates. The validation results show a correlation coefficient (R2) of 0.9 and a median monthly relative error between 0.28% (August) and 28.08% (December). The monthly estimates are more accurate during summer time, while spatially and technology-wise no significant differences are found.

Suggested Citation

  • Buffat, René & Grassi, Stefano & Raubal, Martin, 2018. "A scalable method for estimating rooftop solar irradiation potential over large regions," Applied Energy, Elsevier, vol. 216(C), pages 389-401.
  • Handle: RePEc:eee:appene:v:216:y:2018:i:c:p:389-401
    DOI: 10.1016/j.apenergy.2018.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918301272
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yadav, Amit Kumar & Chandel, S.S., 2013. "Tilt angle optimization to maximize incident solar radiation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 503-513.
    2. Suomalainen, Kiti & Wang, Vincent & Sharp, Basil, 2017. "Rooftop solar potential based on LiDAR data: Bottom-up assessment at neighbourhood level," Renewable Energy, Elsevier, vol. 111(C), pages 463-475.
    3. Myers, Daryl R., 2005. "Solar radiation modeling and measurements for renewable energy applications: data and model quality," Energy, Elsevier, vol. 30(9), pages 1517-1531.
    4. Lingfors, D. & Bright, J.M. & Engerer, N.A. & Ahlberg, J. & Killinger, S. & Widén, J., 2017. "Comparing the capability of low- and high-resolution LiDAR data with application to solar resource assessment, roof type classification and shading analysis," Applied Energy, Elsevier, vol. 205(C), pages 1216-1230.
    5. Arnette, Andrew N., 2013. "Integrating rooftop solar into a multi-source energy planning optimization model," Applied Energy, Elsevier, vol. 111(C), pages 456-467.
    6. Gooding, James & Crook, Rolf & Tomlin, Alison S., 2015. "Modelling of roof geometries from low-resolution LiDAR data for city-scale solar energy applications using a neighbouring buildings method," Applied Energy, Elsevier, vol. 148(C), pages 93-104.
    7. Jacques, David A. & Gooding, James & Giesekam, Jannik J. & Tomlin, Alison S. & Crook, Rolf, 2014. "Methodology for the assessment of PV capacity over a city region using low-resolution LiDAR data and application to the City of Leeds (UK)," Applied Energy, Elsevier, vol. 124(C), pages 28-34.
    8. Lu, Ning & Qin, Jun & Yang, Kun & Sun, Jiulin, 2011. "A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data," Energy, Elsevier, vol. 36(5), pages 3179-3188.
    9. Cole, Wesley & Lewis, Haley & Sigrin, Ben & Margolis, Robert, 2016. "Interactions of rooftop PV deployment with the capacity expansion of the bulk power system," Applied Energy, Elsevier, vol. 168(C), pages 473-481.
    10. Peng, Jinqing & Lu, Lin, 2013. "Investigation on the development potential of rooftop PV system in Hong Kong and its environmental benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 149-162.
    11. Sun, Yan-wei & Hof, Angela & Wang, Run & Liu, Jian & Lin, Yan-jie & Yang, De-wei, 2013. "GIS-based approach for potential analysis of solar PV generation at the regional scale: A case study of Fujian Province," Energy Policy, Elsevier, vol. 58(C), pages 248-259.
    12. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    13. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    14. Lukač, Niko & Žlaus, Danijel & Seme, Sebastijan & Žalik, Borut & Štumberger, Gorazd, 2013. "Rating of roofs’ surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data," Applied Energy, Elsevier, vol. 102(C), pages 803-812.
    15. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    16. Demain, Colienne & Journée, Michel & Bertrand, Cédric, 2013. "Evaluation of different models to estimate the global solar radiation on inclined surfaces," Renewable Energy, Elsevier, vol. 50(C), pages 710-721.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    2. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    3. Primož Mavsar & Klemen Sredenšek & Bojan Štumberger & Miralem Hadžiselimović & Sebastijan Seme, 2019. "Simplified Method for Analyzing the Availability of Rooftop Photovoltaic Potential," Energies, MDPI, vol. 12(22), pages 1-17, November.
    4. Assouline, Dan & Mohajeri, Nahid & Scartezzini, Jean-Louis, 2018. "Large-scale rooftop solar photovoltaic technical potential estimation using Random Forests," Applied Energy, Elsevier, vol. 217(C), pages 189-211.
    5. Jiang, Mingkun & Qi, Lingfei & Yu, Ziyi & Wu, Dadi & Si, Pengfei & Li, Peiran & Wei, Wendong & Yu, Xinhai & Yan, Jinyue, 2021. "National level assessment of using existing airport infrastructures for photovoltaic deployment," Applied Energy, Elsevier, vol. 298(C).
    6. Lukač, Niko & Seme, Sebastijan & Dežan, Katarina & Žalik, Borut & Štumberger, Gorazd, 2016. "Economic and environmental assessment of rooftops regarding suitability for photovoltaic systems installation based on remote sensing data," Energy, Elsevier, vol. 107(C), pages 854-865.
    7. Elham Fakhraian & Marc Alier & Francesc Valls Dalmau & Alireza Nameni & Maria José Casañ Guerrero, 2021. "The Urban Rooftop Photovoltaic Potential Determination," Sustainability, MDPI, vol. 13(13), pages 1-18, July.
    8. Aslani, Mohammad & Seipel, Stefan, 2022. "Automatic identification of utilizable rooftop areas in digital surface models for photovoltaics potential assessment," Applied Energy, Elsevier, vol. 306(PA).
    9. Lee, Minhyun & Hong, Taehoon & Jeong, Kwangbok & Kim, Jimin, 2018. "A bottom-up approach for estimating the economic potential of the rooftop solar photovoltaic system considering the spatial and temporal diversity," Applied Energy, Elsevier, vol. 232(C), pages 640-656.
    10. Wang, Yu & He, Jijiang & Chen, Wenying, 2021. "Distributed solar photovoltaic development potential and a roadmap at the city level in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Sredenšek, Klemen & Štumberger, Bojan & Hadžiselimović, Miralem & Mavsar, Primož & Seme, Sebastijan, 2022. "Physical, geographical, technical, and economic potential for the optimal configuration of photovoltaic systems using a digital surface model and optimization method," Energy, Elsevier, vol. 242(C).
    12. Chen, Zhe & Yang, Bisheng & Zhu, Rui & Dong, Zhen, 2024. "City-scale solar PV potential estimation on 3D buildings using multi-source RS data: A case study in Wuhan, China," Applied Energy, Elsevier, vol. 359(C).
    13. Lingfors, D. & Bright, J.M. & Engerer, N.A. & Ahlberg, J. & Killinger, S. & Widén, J., 2017. "Comparing the capability of low- and high-resolution LiDAR data with application to solar resource assessment, roof type classification and shading analysis," Applied Energy, Elsevier, vol. 205(C), pages 1216-1230.
    14. Sebastian Krapf & Nils Kemmerzell & Syed Khawaja Haseeb Uddin & Manuel Hack Vázquez & Fabian Netzler & Markus Lienkamp, 2021. "Towards Scalable Economic Photovoltaic Potential Analysis Using Aerial Images and Deep Learning," Energies, MDPI, vol. 14(13), pages 1-22, June.
    15. Diane Palmer & Elena Koumpli & Ian Cole & Ralph Gottschalg & Thomas Betts, 2018. "A GIS-Based Method for Identification of Wide Area Rooftop Suitability for Minimum Size PV Systems Using LiDAR Data and Photogrammetry," Energies, MDPI, vol. 11(12), pages 1-22, December.
    16. Lee, Minhyun & Hong, Taehoon & Jeong, Jaewook & Jeong, Kwangbok, 2018. "Development of a rooftop solar photovoltaic rating system considering the technical and economic suitability criteria at the building level," Energy, Elsevier, vol. 160(C), pages 213-224.
    17. Malof, Jordan M. & Bradbury, Kyle & Collins, Leslie M. & Newell, Richard G., 2016. "Automatic detection of solar photovoltaic arrays in high resolution aerial imagery," Applied Energy, Elsevier, vol. 183(C), pages 229-240.
    18. Myeongchan Oh & Hyeong-Dong Park, 2019. "Optimization of Solar Panel Orientation Considering Temporal Volatility and Scenario-Based Photovoltaic Potential: A Case Study in Seoul National University," Energies, MDPI, vol. 12(17), pages 1-17, August.
    19. Zhong, Qing & Nelson, Jake R. & Tong, Daoqin & Grubesic, Tony H., 2022. "A spatial optimization approach to increase the accuracy of rooftop solar energy assessments," Applied Energy, Elsevier, vol. 316(C).
    20. Shakouri, Mahmoud & Lee, Hyun Woo & Kim, Yong-Woo, 2017. "A probabilistic portfolio-based model for financial valuation of community solar," Applied Energy, Elsevier, vol. 191(C), pages 709-726.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:216:y:2018:i:c:p:389-401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.