IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v27y2013icp149-162.html
   My bibliography  Save this article

Investigation on the development potential of rooftop PV system in Hong Kong and its environmental benefits

Author

Listed:
  • Peng, Jinqing
  • Lu, Lin

Abstract

Solar photovoltaic (PV) technology is expected as one of the ideal renewable energy resources which can be used in large scale in Hong Kong. This paper presents an in-depth investigation into the development potential of rooftop PV system in Hong Kong and its environmental benefits as well. The potential installation capacity of rooftop PV systems is estimated to be 5.97GWp, and the annual potential energy output is predicted to be 5981GWh accordingly. The annual energy yield can account for 14.2% of the total electricity used in Hong Kong in 2011. In addition, about 3,732,000t of greenhouse gas (GHG) emissions could be avoided yearly by the replacement of the equivalent local electricity mix. For environmental benefits, the investigation results showed that the energy payback time (EPBT) and the GHG emission payback time (GPBT) of different types of rooftop PV systems in Hong Kong ranged from 1.9 to 3.0 and 1.4 to 2.1 years, respectively, both of which are far less than the systems' lifespan of 30 years. The energy yield ratio (EYR) ranged from 10.0 to 15.8, which indicates that the rooftop PV systems could generate at least 10 times the energy requirement during the system's lifetime. Although the current PV system installation cost is relatively high in Hong Kong, PV electricity is expected to fully compete with traditional electricity modes in the near future if appropriate subsidies are provided by the local government, carbon credits benefits are considered and installation cost can be further reduced. Thus, more proactive energy policies and aggressive development targets for PV technology should be set by the government. The findings presented in this paper are expected to provide a theoretical basis for local policy makers to set reasonable renewable energy policies, development targets as well as subsidies for PV technology in Hong Kong.

Suggested Citation

  • Peng, Jinqing & Lu, Lin, 2013. "Investigation on the development potential of rooftop PV system in Hong Kong and its environmental benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 149-162.
  • Handle: RePEc:eee:rensus:v:27:y:2013:i:c:p:149-162
    DOI: 10.1016/j.rser.2013.06.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113004073
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.06.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, L. & Yang, H.X., 2010. "Environmental payback time analysis of a roof-mounted building-integrated photovoltaic (BIPV) system in Hong Kong," Applied Energy, Elsevier, vol. 87(12), pages 3625-3631, December.
    2. Richards, B.S. & Watt, M.E., 2007. "Permanently dispelling a myth of photovoltaics via the adoption of a new net energy indicator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(1), pages 162-172, January.
    3. Radhi, Hassan, 2012. "Trade-off between environmental and economic implications of PV systems integrated into the UAE residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2468-2474.
    4. Schallenberg-Rodríguez, Julieta, 2013. "Photovoltaic techno-economical potential on roofs in regions and islands: The case of the Canary Islands. Methodological review and methodology proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 219-239.
    5. Peng, Jinqing & Lu, Lin & Yang, Hongxing, 2013. "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 255-274.
    6. Close, Josie & Pang, Huey & Lam, K.H. & Li, Thomas, 2006. "10% from renewables? The potential contribution from an HK schools PV installation programme," Renewable Energy, Elsevier, vol. 31(11), pages 1665-1672.
    7. Alsema, Erik, 1998. "Energy requirements of thin-film solar cell modules--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 2(4), pages 387-415, December.
    8. Radhi, Hassan, 2011. "On the value of decentralised PV systems for the GCC residential sector," Energy Policy, Elsevier, vol. 39(4), pages 2020-2027, April.
    9. Talavera, D.L. & Muñoz-Cerón, E. & de la Casa, J. & Ortega, M.J. & Almonacid, G., 2011. "Energy and economic analysis for large-scale integration of small photovoltaic systems in buildings: The case of a public location in Southern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4310-4319.
    10. Alsema, E. A. & Nieuwlaar, E., 2000. "Energy viability of photovoltaic systems," Energy Policy, Elsevier, vol. 28(14), pages 999-1010, November.
    11. Li, Danny H.W. & Cheung, Gary H.W., 2005. "Study of models for predicting the diffuse irradiance on inclined surfaces," Applied Energy, Elsevier, vol. 81(2), pages 170-186, June.
    12. Laleman, Ruben & Albrecht, Johan & Dewulf, Jo, 2011. "Life Cycle Analysis to estimate the environmental impact of residential photovoltaic systems in regions with a low solar irradiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 267-281, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Menoufi, Karim & Chemisana, Daniel & Rosell, Joan I., 2013. "Life Cycle Assessment of a Building Integrated Concentrated Photovoltaic scheme," Applied Energy, Elsevier, vol. 111(C), pages 505-514.
    2. Peng, Jinqing & Lu, Lin & Yang, Hongxing, 2013. "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 255-274.
    3. Aotian Song & Lin Lu & Zhizhao Liu & Man Sing Wong, 2016. "A Study of Incentive Policies for Building-Integrated Photovoltaic Technology in Hong Kong," Sustainability, MDPI, vol. 8(8), pages 1-21, August.
    4. Aman, M.M. & Solangi, K.H. & Hossain, M.S. & Badarudin, A. & Jasmon, G.B. & Mokhlis, H. & Bakar, A.H.A. & Kazi, S.N, 2015. "A review of Safety, Health and Environmental (SHE) issues of solar energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1190-1204.
    5. Ravikumar, Dwarakanath & Wender, Ben & Seager, Thomas P. & Fraser, Matthew P. & Tao, Meng, 2017. "A climate rationale for research and development on photovoltaics manufacture," Applied Energy, Elsevier, vol. 189(C), pages 245-256.
    6. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    7. Kong, Minjin & Ji, Changyoon & Hong, Taehoon & Kang, Hyuna, 2022. "Impact of the use of recycled materials on the energy conservation and energy transition of buildings using life cycle assessment: A case study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    8. Tripathy, M. & Sadhu, P.K. & Panda, S.K., 2016. "A critical review on building integrated photovoltaic products and their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 451-465.
    9. Bhandari, Khagendra P. & Collier, Jennifer M. & Ellingson, Randy J. & Apul, Defne S., 2015. "Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 133-141.
    10. Parisi, Maria Laura & Maranghi, Simone & Basosi, Riccardo, 2014. "The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 124-138.
    11. Kabakian, V. & McManus, M.C. & Harajli, H., 2015. "Attributional life cycle assessment of mounted 1.8kWp monocrystalline photovoltaic system with batteries and comparison with fossil energy production system," Applied Energy, Elsevier, vol. 154(C), pages 428-437.
    12. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    13. Kaldellis, J.K. & Zafirakis, D. & Kondili, E., 2009. "Optimum autonomous stand-alone photovoltaic system design on the basis of energy pay-back analysis," Energy, Elsevier, vol. 34(9), pages 1187-1198.
    14. Enrica Leccisi & Marco Raugei & Vasilis Fthenakis, 2016. "The Energy and Environmental Performance of Ground-Mounted Photovoltaic Systems—A Timely Update," Energies, MDPI, vol. 9(8), pages 1-13, August.
    15. Gerbinet, Saïcha & Belboom, Sandra & Léonard, Angélique, 2014. "Life Cycle Analysis (LCA) of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 747-753.
    16. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    17. Bilir, Levent & Yildirim, Nurdan, 2018. "Modeling and performance analysis of a hybrid system for a residential application," Energy, Elsevier, vol. 163(C), pages 555-569.
    18. Kaldellis, J.K. & Zafirakis, D. & Kondili, E., 2010. "Energy pay-back period analysis of stand-alone photovoltaic systems," Renewable Energy, Elsevier, vol. 35(7), pages 1444-1454.
    19. Sharples, Steve & Radhi, Hassan, 2013. "Assessing the technical and economic performance of building integrated photovoltaics and their value to the GCC society," Renewable Energy, Elsevier, vol. 55(C), pages 150-159.
    20. Koppelaar, R.H.E.M., 2017. "Solar-PV energy payback and net energy: Meta-assessment of study quality, reproducibility, and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1241-1255.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:27:y:2013:i:c:p:149-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.