IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v131y2019icp1288-1299.html
   My bibliography  Save this article

Assessment of net energy contribution to buildings by rooftop photovoltaic systems in hot-humid climates

Author

Listed:
  • Dehwah, Ammar H.A.
  • Asif, Muhammad

Abstract

The study aims to investigate the overall impact of rooftop photovoltaic (PV) systems on the energy performance of residential buildings in hot-humid climates. The study area spans over 100 km2 encompassing 33,000 residential units in the city of Al-Khobar in Saudi Arabia. It examines the restrictions towards the utilizability of building rooftops for PV application. The total building rooftop area and its corresponding PV output at the urban scale level has been estimated with the help of geographic information systems and PV simulation tools. The secondary contribution by PV in terms of heat gain reduction has also been investigated through EnergyPlus simulation engine. It is found that villas and apartment buildings respectively offer 21% and 28% of their rooftops for PV application. Results suggest that solar PV can offset 19% of the electricity demand when 25% of the building roof is utilized, in addition to a cooling load reduction of 2% due to the shading effect of panels. For the total study area, the annual electricity generation potential for tilted and flat application of PV with the existing roofs conditions turns out to be 797 GWh and 757 GWh respectively.

Suggested Citation

  • Dehwah, Ammar H.A. & Asif, Muhammad, 2019. "Assessment of net energy contribution to buildings by rooftop photovoltaic systems in hot-humid climates," Renewable Energy, Elsevier, vol. 131(C), pages 1288-1299.
  • Handle: RePEc:eee:renene:v:131:y:2019:i:c:p:1288-1299
    DOI: 10.1016/j.renene.2018.08.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118309819
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.08.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahalik, Mantu Kumar & Babu, M. Suresh & Loganathan, Nanthakumar & Shahbaz, Muhammad, 2017. "Does financial development intensify energy consumption in Saudi Arabia?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1022-1034.
    2. Khan, Jibran & Arsalan, Mudassar Hassan, 2016. "Estimation of rooftop solar photovoltaic potential using geo-spatial techniques: A perspective from planned neighborhood of Karachi – Pakistan," Renewable Energy, Elsevier, vol. 90(C), pages 188-203.
    3. Ko, Li & Wang, Jen-Chun & Chen, Chia-Yon & Tsai, Hsing-Yeh, 2015. "Evaluation of the development potential of rooftop solar photovoltaic in Taiwan," Renewable Energy, Elsevier, vol. 76(C), pages 582-595.
    4. Mondal, Md. Alam Hossain & Hawila, Diala & Kennedy, Scott & Mezher, Toufic, 2016. "The GCC countries RE-readiness: Strengths and gaps for development of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1114-1128.
    5. Kurdgelashvili, Lado & Li, Junli & Shih, Cheng-Hao & Attia, Benjamin, 2016. "Estimating technical potential for rooftop photovoltaics in California, Arizona and New Jersey," Renewable Energy, Elsevier, vol. 95(C), pages 286-302.
    6. Zhang, Weilong & Lu, Lin & Peng, Jinqing, 2017. "Evaluation of potential benefits of solar photovoltaic shadings in Hong Kong," Energy, Elsevier, vol. 137(C), pages 1152-1158.
    7. Alkhathlan, Khalid & Javid, Muhammad, 2015. "Carbon emissions and oil consumption in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 105-111.
    8. Muhammad Asif, 2016. "Urban Scale Application of Solar PV to Improve Sustainability in the Building and the Energy Sectors of KSA," Sustainability, MDPI, vol. 8(11), pages 1-11, November.
    9. Wong, Man Sing & Zhu, Rui & Liu, Zhizhao & Lu, Lin & Peng, Jinqing & Tang, Zhaoqin & Lo, Chung Ho & Chan, Wai Ki, 2016. "Estimation of Hong Kong’s solar energy potential using GIS and remote sensing technologies," Renewable Energy, Elsevier, vol. 99(C), pages 325-335.
    10. Wang, Yiping & Tian, Wei & Ren, Jianbo & Zhu, Li & Wang, Qingzhao, 2006. "Influence of a building's integrated-photovoltaics on heating and cooling loads," Applied Energy, Elsevier, vol. 83(9), pages 989-1003, September.
    11. Lai, Chun Sing & McCulloch, Malcolm D., 2017. "Levelized cost of electricity for solar photovoltaic and electrical energy storage," Applied Energy, Elsevier, vol. 190(C), pages 191-203.
    12. Miranda, Raul F.C. & Szklo, Alexandre & Schaeffer, Roberto, 2015. "Technical-economic potential of PV systems on Brazilian rooftops," Renewable Energy, Elsevier, vol. 75(C), pages 694-713.
    13. Ouda, O.K.M. & Raza, S.A. & Nizami, A.S. & Rehan, M. & Al-Waked, R. & Korres, N.E., 2016. "Waste to energy potential: A case study of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 328-340.
    14. Hassan Saeed Khan & Muhammad Asif, 2017. "Impact of Green Roof and Orientation on the Energy Performance of Buildings: A Case Study from Saudi Arabia," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    15. Hong, Taehoon & Koo, Choongwan & Park, Joonho & Park, Hyo Seon, 2014. "A GIS (geographic information system)-based optimization model for estimating the electricity generation of the rooftop PV (photovoltaic) system," Energy, Elsevier, vol. 65(C), pages 190-199.
    16. Zweibel, Ken, 2010. "Should solar photovoltaics be deployed sooner because of long operating life at low, predictable cost?," Energy Policy, Elsevier, vol. 38(11), pages 7519-7530, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed Albattah & Daniel Efurosibina Attoye, 2021. "A Quantitative Investigation on Awareness of Renewable Energy Building Technology in the United Arab Emirates," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
    2. Zhenqiang Han & Weidong Zhou & Aimin Sha & Liqun Hu & Runjie Wei, 2023. "Assessing the Photovoltaic Power Generation Potential of Highway Slopes," Sustainability, MDPI, vol. 15(16), pages 1-26, August.
    3. Cristea, Ciprian & Cristea, Maria & Birou, Iulian & Tîrnovan, Radu-Adrian, 2020. "Economic assessment of grid-connected residential solar photovoltaic systems introduced under Romania’s new regulation," Renewable Energy, Elsevier, vol. 162(C), pages 13-29.
    4. Ahmed, Ahsan & Nadeem, Talha Bin & Naqvi, Asad A. & Siddiqui, Mubashir Ali & Khan, Muhammad Hamza & Bin Zahid, Muhammad Saad & Ammar, Syed Muhammad, 2022. "Investigation of PV utilizability on university buildings: A case study of Karachi, Pakistan," Renewable Energy, Elsevier, vol. 195(C), pages 238-251.
    5. Ciprian Cristea & Maria Cristea & Dan Doru Micu & Andrei Ceclan & Radu-Adrian Tîrnovan & Florica Mioara Șerban, 2022. "Tridimensional Sustainability and Feasibility Assessment of Grid-Connected Solar Photovoltaic Systems Applied for the Technical University of Cluj-Napoca," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    6. Sánchez-Aparicio, M. & Martín-Jiménez, J. & Del Pozo, S. & González-González, E. & Lagüela, S., 2021. "Ener3DMap-SolarWeb roofs: A geospatial web-based platform to compute photovoltaic potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Ghaleb, Belal & Asif, Muhammad, 2022. "Assessment of solar PV potential in commercial buildings," Renewable Energy, Elsevier, vol. 187(C), pages 618-630.
    8. Jamal Al-Qawasmi & Muhammad Asif & Ahmed Abd El Fattah & Mohammad O. Babsail, 2019. "Water Efficiency and Management in Sustainable Building Rating Systems: Examining Variation in Criteria Usage," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    9. Salah Ud-Din Khan & Irfan Wazeer & Zeyad Almutairi, 2023. "Comparative Analysis of SAM and RETScreen Tools for the Case Study of 600 kW Solar PV System Installation in Riyadh, Saudi Arabia," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    10. Mariam Gómez Sánchez & Yunesky Masip Macia & Alejandro Fernández Gil & Carlos Castro & Suleivys M. Nuñez González & Jacqueline Pedrera Yanes, 2020. "A Mathematical Model for the Optimization of Renewable Energy Systems," Mathematics, MDPI, vol. 9(1), pages 1-16, December.
    11. Guan, Bowen & Yang, Haobo & Zhang, Tao & Liu, Xiaohua & Wang, Xinke, 2024. "Technoeconomic analysis of rooftop PV system in elevated metro station for cost-effective operation and clean electrification," Renewable Energy, Elsevier, vol. 226(C).
    12. Ammar Hamoud Ahmad Dehwah & Muhammad Asif & Ismail Mohammad Budaiwi & Adel Alshibani, 2020. "Techno-Economic Assessment of Rooftop PV Systems in Residential Buildings in Hot–Humid Climates," Sustainability, MDPI, vol. 12(23), pages 1-19, December.
    13. Bhuvad, Sushant Suresh & Udayraj,, 2022. "Investigation of annual performance of a building shaded by rooftop PV panels in different climate zones of India," Renewable Energy, Elsevier, vol. 189(C), pages 1337-1357.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sredenšek, Klemen & Štumberger, Bojan & Hadžiselimović, Miralem & Mavsar, Primož & Seme, Sebastijan, 2022. "Physical, geographical, technical, and economic potential for the optimal configuration of photovoltaic systems using a digital surface model and optimization method," Energy, Elsevier, vol. 242(C).
    2. Abdullah Shaher & Saad Alqahtani & Ali Garada & Liana Cipcigan, 2023. "Rooftop Solar Photovoltaic in Saudi Arabia to Supply Electricity Demand in Localised Urban Areas: A Study of the City of Abha," Energies, MDPI, vol. 16(11), pages 1-24, May.
    3. Primož Mavsar & Klemen Sredenšek & Bojan Štumberger & Miralem Hadžiselimović & Sebastijan Seme, 2019. "Simplified Method for Analyzing the Availability of Rooftop Photovoltaic Potential," Energies, MDPI, vol. 12(22), pages 1-17, November.
    4. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    5. Ahmed, Ahsan & Nadeem, Talha Bin & Naqvi, Asad A. & Siddiqui, Mubashir Ali & Khan, Muhammad Hamza & Bin Zahid, Muhammad Saad & Ammar, Syed Muhammad, 2022. "Investigation of PV utilizability on university buildings: A case study of Karachi, Pakistan," Renewable Energy, Elsevier, vol. 195(C), pages 238-251.
    6. Bódis, Katalin & Kougias, Ioannis & Jäger-Waldau, Arnulf & Taylor, Nigel & Szabó, Sándor, 2019. "A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Alhammami, Hasan & An, Heungjo, 2021. "Techno-economic analysis and policy implications for promoting residential rooftop solar photovoltaics in Abu Dhabi, UAE," Renewable Energy, Elsevier, vol. 167(C), pages 359-368.
    8. Ammar Hamoud Ahmad Dehwah & Muhammad Asif & Ismail Mohammad Budaiwi & Adel Alshibani, 2020. "Techno-Economic Assessment of Rooftop PV Systems in Residential Buildings in Hot–Humid Climates," Sustainability, MDPI, vol. 12(23), pages 1-19, December.
    9. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    10. Guglielmina Mutani & Valeria Todeschi, 2021. "Optimization of Costs and Self-Sufficiency for Roof Integrated Photovoltaic Technologies on Residential Buildings," Energies, MDPI, vol. 14(13), pages 1-25, July.
    11. Liu, Jiang & Wu, Qifeng & Lin, Zhipeng & Shi, Huijie & Wen, Shaoyang & Wu, Qiaoyu & Zhang, Junxue & Peng, Changhai, 2023. "A novel approach for assessing rooftop-and-facade solar photovoltaic potential in rural areas using three-dimensional (3D) building models constructed with GIS," Energy, Elsevier, vol. 282(C).
    12. Firouzjah, Khalil Gorgani, 2018. "Assessment of small-scale solar PV systems in Iran: Regions priority, potentials and financial feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 267-274.
    13. Hannes Koch & Stefan Lechner & Sebastian Erdmann & Martin Hofmann, 2022. "Assessing the Potential of Rooftop Photovoltaics by Processing High-Resolution Irradiation Data, as Applied to Giessen, Germany," Energies, MDPI, vol. 15(19), pages 1-17, September.
    14. Mao, Hongzhi & Chen, Xie & Luo, Yongqiang & Deng, Jie & Tian, Zhiyong & Yu, Jinghua & Xiao, Yimin & Fan, Jianhua, 2023. "Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    15. Ye, Yuxuan & Zhu, Rui & Yan, Jinyue & Lu, Lin & Wong, Man Sing & Luo, Wei & Chen, Min & Zhang, Fan & You, Linlin & Wang, Yafei & Qin, Zheng, 2023. "Planning the installation of building-integrated photovoltaic shading devices: A GIS-based spatiotemporal analysis and optimization approach," Renewable Energy, Elsevier, vol. 216(C).
    16. Liao, Xuan & Zhu, Rui & Wong, Man Sing & Heo, Joon & Chan, P.W. & Kwok, Coco Yin Tung, 2023. "Fast and accurate estimation of solar irradiation on building rooftops in Hong Kong: A machine learning-based parameterization approach," Renewable Energy, Elsevier, vol. 216(C).
    17. Ruhang, Xu, 2016. "The restriction research for urban area building integrated grid-connected PV power generation potential," Energy, Elsevier, vol. 113(C), pages 124-143.
    18. Xin-gang, Zhao & Yi-min, Xie, 2019. "The economic performance of industrial and commercial rooftop photovoltaic in China," Energy, Elsevier, vol. 187(C).
    19. Lee, Minhyun & Hong, Taehoon & Jeong, Jaewook & Jeong, Kwangbok, 2018. "Development of a rooftop solar photovoltaic rating system considering the technical and economic suitability criteria at the building level," Energy, Elsevier, vol. 160(C), pages 213-224.
    20. Lee, Minhyun & Hong, Taehoon & Jeong, Kwangbok & Kim, Jimin, 2018. "A bottom-up approach for estimating the economic potential of the rooftop solar photovoltaic system considering the spatial and temporal diversity," Applied Energy, Elsevier, vol. 232(C), pages 640-656.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:131:y:2019:i:c:p:1288-1299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.