IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp1027-1037.html
   My bibliography  Save this article

Multi-objective optimization of hot steam injection variables to control wetness parameters of steam flow within nozzles

Author

Listed:
  • Mirhoseini, Mohadeseh Sadat
  • Boroomand, Masoud

Abstract

The formation of liquid droplets in the low pressure steam turbines has devastating impacts on the turbine adiabatic efficiency and also causes the mechanical damage of blades due to the occurrence of severe erosion phenomenon. Previous investigations have shown that the injection of steam can decrease liquid mass fraction as well as the size of the averaged radius of droplets. To exploit the maximum potentials of this method, the optimization of injection variables is necessary. In the present study, the numerical solution of wet steam flow by the injection of hot steam within convergent-divergent nozzles together with a multi-objective genetic algorithm method are used to evaluate the appropriate injection parameters. It is concluded that to reduce liquid droplet size by 66% and liquid mass fraction by 13%, an injection steam flow rate of 4% of the main stream flow rate with a temperature 1.8 times of inlet steam temperature is required. Such a reduction of liquid droplet size has an enormous effect on lowering the erosion damages of blades. Furthermore, the injection drives the liquid droplets away from the solid boundaries, which is also expected to reduce the possible mechanical damages to the blades and the casings of turbine.

Suggested Citation

  • Mirhoseini, Mohadeseh Sadat & Boroomand, Masoud, 2017. "Multi-objective optimization of hot steam injection variables to control wetness parameters of steam flow within nozzles," Energy, Elsevier, vol. 141(C), pages 1027-1037.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:1027-1037
    DOI: 10.1016/j.energy.2017.09.138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217316213
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.09.138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wróblewski, Włodzimierz & Dykas, Sławomir, 2016. "Two-fluid model with droplet size distribution for condensing steam flows," Energy, Elsevier, vol. 106(C), pages 112-120.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hosseini, Seyed Ali & Lakzian, Esmail & Zarei, Daryoush & Zare, Mehdi, 2024. "Design and optimization of slot number in supercooled vapor suction in steam turbine blades for reducing the wetness," Energy, Elsevier, vol. 301(C).
    2. Han, Xu & Zeng, Wei & Han, Zhonghe, 2019. "Investigation of the comprehensive performance of turbine stator cascades with heating endwall fences," Energy, Elsevier, vol. 174(C), pages 1188-1199.
    3. Momeni Dolatabadi, Amir & Moslehi, Jamshid & Saffari Pour, Mohsen & Mousavi Ajarostaghi, Seyed Soheil & Poncet, Sébastien & Arıcı, Müslüm, 2022. "Modified model of reduction condensing losses strategy into the wet steam flow considering efficient energy of steam turbine based on injection of nano-droplets," Energy, Elsevier, vol. 242(C).
    4. Yang, Yan & Zhu, Xiaowei & Yan, Yuying & Ding, Hongbing & Wen, Chuang, 2019. "Performance of supersonic steam ejectors considering the nonequilibrium condensation phenomenon for efficient energy utilisation," Applied Energy, Elsevier, vol. 242(C), pages 157-167.
    5. Hoseinzade, Davood & Lakzian, Esmail & Hashemian, Ali, 2021. "A blackbox optimization of volumetric heating rate for reducing the wetness of the steam flow through turbine blades," Energy, Elsevier, vol. 220(C).
    6. Ansari, Mehran & Esfahanian, Vahid & Izadi, Mohammad Javad & Bashi, Hosein & Tavakoli, Alireza & Kordi, Mohammad, 2023. "Implementation of hot steam injection in steam turbine design: A novel mean-line method coupled with multi-objective optimization and neural network," Energy, Elsevier, vol. 283(C).
    7. Zhang, Guojie & Zhang, Xinzhe & Wang, Fangfang & Wang, Dingbiao & Jin, Zunlong & Zhou, Zhongning, 2019. "Design and optimization of novel dehumidification strategies based on modified nucleation model in three-dimensional cascade," Energy, Elsevier, vol. 187(C).
    8. Aliabadi, Mohammad Ali Faghih & Lakzian, Esmail & Khazaei, Iman & Jahangiri, Ali, 2020. "A comprehensive investigation of finding the best location for hot steam injection into the wet steam turbine blade cascade," Energy, Elsevier, vol. 190(C).
    9. Dolatabadi, Amir Momeni & Lakzian, Esmail & Heydari, Mahdi & Khan, Afrasyab, 2022. "A modified model of the suction technique of wetness reducing in wet steam flow considering power-saving," Energy, Elsevier, vol. 238(PA).
    10. Zhonghe Han & Wei Zeng & Xu Han & Peng Xiang, 2018. "Investigating the Dehumidification Characteristics of Turbine Stator Cascades with Parallel Channels," Energies, MDPI, vol. 11(9), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoseinzade, Davood & Lakzian, Esmail & Hashemian, Ali, 2021. "A blackbox optimization of volumetric heating rate for reducing the wetness of the steam flow through turbine blades," Energy, Elsevier, vol. 220(C).
    2. Han, Xu & Zeng, Wei & Han, Zhonghe, 2019. "Investigation of the comprehensive performance of turbine stator cascades with heating endwall fences," Energy, Elsevier, vol. 174(C), pages 1188-1199.
    3. Aliabadi, Mohammad Ali Faghih & Lakzian, Esmail & Khazaei, Iman & Jahangiri, Ali, 2020. "A comprehensive investigation of finding the best location for hot steam injection into the wet steam turbine blade cascade," Energy, Elsevier, vol. 190(C).
    4. Vatanmakan, Masoud & Lakzian, Esmail & Mahpeykar, Mohammad Reza, 2018. "Investigating the entropy generation in condensing steam flow in turbine blades with volumetric heating," Energy, Elsevier, vol. 147(C), pages 701-714.
    5. Bian, Jiang & Cao, Xuewen & Yang, Wen & Edem, Mawugbe Ayivi & Yin, Pengbo & Jiang, Wenming, 2018. "Supersonic liquefaction properties of natural gas in the Laval nozzle," Energy, Elsevier, vol. 159(C), pages 706-715.
    6. Cao, Lihua & Li, Longge & Dong, Enfu & Si, Heyong & Ning, Zhe & Liu, Miao, 2019. "Influence of aerodynamic characteristics optimization of exhaust passage on heat transfer of condenser in steam turbine," Energy, Elsevier, vol. 188(C).
    7. Zou, Aihong & Zeng, Yupei & Luo, Ercang, 2023. "New generation hydrogen liquefaction technology by transonic two-phase expander," Energy, Elsevier, vol. 272(C).
    8. Zhang, Guojie & Zhang, Xinzhe & Wang, Fangfang & Wang, Dingbiao & Jin, Zunlong & Zhou, Zhongning, 2019. "Design and optimization of novel dehumidification strategies based on modified nucleation model in three-dimensional cascade," Energy, Elsevier, vol. 187(C).
    9. Bian, Jiang & Cao, Xuewen & Yang, Wen & Song, Xiaodan & Xiang, Chengcheng & Gao, Song, 2019. "Condensation characteristics of natural gas in the supersonic liquefaction process," Energy, Elsevier, vol. 168(C), pages 99-110.
    10. Hu, Pengfei & Zhao, Pu & Li, Qi & Hou, Tianbo & Wang, Shibo & Cao, Lihua & Wang, Yanhong, 2023. "Performance of non-equilibrium condensation flow in wet steam zone of steam turbine based on modified model," Energy, Elsevier, vol. 267(C).
    11. Zhang, Guojie & Wang, Xiaogang & Jin, Zunlong & Dykas, Sławomir & Smołka, Krystian, 2023. "Numerical study of the loss and power prediction based on a modified non-equilibrium condensation model in a 200 MW industrial-scale steam turbine under different operation conditions," Energy, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:1027-1037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.