A modified model of the suction technique of wetness reducing in wet steam flow considering power-saving
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.121685
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hoseinzade, Davood & Lakzian, Esmail & Hashemian, Ali, 2021. "A blackbox optimization of volumetric heating rate for reducing the wetness of the steam flow through turbine blades," Energy, Elsevier, vol. 220(C).
- Mirhoseini, Mohadeseh Sadat & Boroomand, Masoud, 2017. "Multi-objective optimization of hot steam injection variables to control wetness parameters of steam flow within nozzles," Energy, Elsevier, vol. 141(C), pages 1027-1037.
- Wang, Xiaodong & Dong, Jingliang & Zhang, Guangli & Fu, Qiang & Li, He & Han, Yu & Tu, Jiyuan, 2019. "The primary pseudo-shock pattern of steam ejector and its influence on pumping efficiency based on CFD approach," Energy, Elsevier, vol. 167(C), pages 224-234.
- Vatanmakan, Masoud & Lakzian, Esmail & Mahpeykar, Mohammad Reza, 2018. "Investigating the entropy generation in condensing steam flow in turbine blades with volumetric heating," Energy, Elsevier, vol. 147(C), pages 701-714.
- Aliabadi, Mohammad Ali Faghih & Lakzian, Esmail & Khazaei, Iman & Jahangiri, Ali, 2020. "A comprehensive investigation of finding the best location for hot steam injection into the wet steam turbine blade cascade," Energy, Elsevier, vol. 190(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Momeni Dolatabadi, Amir & Moslehi, Jamshid & Saffari Pour, Mohsen & Mousavi Ajarostaghi, Seyed Soheil & Poncet, Sébastien & Arıcı, Müslüm, 2022. "Modified model of reduction condensing losses strategy into the wet steam flow considering efficient energy of steam turbine based on injection of nano-droplets," Energy, Elsevier, vol. 242(C).
- Ansari, Mehran & Esfahanian, Vahid & Izadi, Mohammad Javad & Bashi, Hosein & Tavakoli, Alireza & Kordi, Mohammad, 2023. "Implementation of hot steam injection in steam turbine design: A novel mean-line method coupled with multi-objective optimization and neural network," Energy, Elsevier, vol. 283(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ansari, Mehran & Esfahanian, Vahid & Izadi, Mohammad Javad & Bashi, Hosein & Tavakoli, Alireza & Kordi, Mohammad, 2023. "Implementation of hot steam injection in steam turbine design: A novel mean-line method coupled with multi-objective optimization and neural network," Energy, Elsevier, vol. 283(C).
- Hoseinzade, Davood & Lakzian, Esmail & Hashemian, Ali, 2021. "A blackbox optimization of volumetric heating rate for reducing the wetness of the steam flow through turbine blades," Energy, Elsevier, vol. 220(C).
- Momeni Dolatabadi, Amir & Moslehi, Jamshid & Saffari Pour, Mohsen & Mousavi Ajarostaghi, Seyed Soheil & Poncet, Sébastien & Arıcı, Müslüm, 2022. "Modified model of reduction condensing losses strategy into the wet steam flow considering efficient energy of steam turbine based on injection of nano-droplets," Energy, Elsevier, vol. 242(C).
- Aliabadi, Mohammad Ali Faghih & Lakzian, Esmail & Khazaei, Iman & Jahangiri, Ali, 2020. "A comprehensive investigation of finding the best location for hot steam injection into the wet steam turbine blade cascade," Energy, Elsevier, vol. 190(C).
- Zhonghe Han & Wei Zeng & Xu Han & Peng Xiang, 2018. "Investigating the Dehumidification Characteristics of Turbine Stator Cascades with Parallel Channels," Energies, MDPI, vol. 11(9), pages 1-17, September.
- Yang, Yan & Zhu, Xiaowei & Yan, Yuying & Ding, Hongbing & Wen, Chuang, 2019. "Performance of supersonic steam ejectors considering the nonequilibrium condensation phenomenon for efficient energy utilisation," Applied Energy, Elsevier, vol. 242(C), pages 157-167.
- Zhang, Guojie & Zhang, Xinzhe & Wang, Fangfang & Wang, Dingbiao & Jin, Zunlong & Zhou, Zhongning, 2019. "Design and optimization of novel dehumidification strategies based on modified nucleation model in three-dimensional cascade," Energy, Elsevier, vol. 187(C).
- Hu, Pengfei & Zhao, Pu & Li, Qi & Hou, Tianbo & Wang, Shibo & Cao, Lihua & Wang, Yanhong, 2023. "Performance of non-equilibrium condensation flow in wet steam zone of steam turbine based on modified model," Energy, Elsevier, vol. 267(C).
- Han, Xu & Zeng, Wei & Han, Zhonghe, 2019. "Investigation of the comprehensive performance of turbine stator cascades with heating endwall fences," Energy, Elsevier, vol. 174(C), pages 1188-1199.
- Zhang, Guojie & Wang, Xiaogang & Wiśniewski, Piotr & Chen, Jiaheng & Qin, Xiang & Dykas, Sławomir, 2023. "Effect of NaCl presence caused by salting out on the heterogeneous-homogeneous coupling non-equilibrium condensation flow in a steam turbine cascade," Energy, Elsevier, vol. 263(PE).
- Zhang, Guojie & Wang, Xiaogang & Chen, Jiaheng & Tang, Songzhen & Smołka, Krystian & Majkut, Mirosław & Jin, Zunlong & Dykas, Sławomir, 2023. "Supersonic nozzle performance prediction considering the homogeneous-heterogeneous coupling spontaneous non-equilibrium condensation," Energy, Elsevier, vol. 284(C).
- Zhang, Guojie & Dykas, Sławomir & Li, Pan & Li, Hang & Wang, Junlei, 2020. "Accurate condensing steam flow modeling in the ejector of the solar-driven refrigeration system," Energy, Elsevier, vol. 212(C).
- Yiqiao Li & Shengqiang Shen & Chao Niu & Yali Guo & Liuyang Zhang, 2022. "The Effect of Different Pressure Conditions on Shock Waves in a Supersonic Steam Ejector," Energies, MDPI, vol. 15(8), pages 1-15, April.
- Hu, Pengfei & Meng, Qingqiang & Fan, Tiantian & Cao, Lihua & Li, Qi, 2023. "Dynamic response of turbine blade considering a droplet-wall interaction in wet steam region," Energy, Elsevier, vol. 265(C).
- Besagni, Giorgio, 2019. "Ejectors on the cutting edge: The past, the present and the perspective," Energy, Elsevier, vol. 170(C), pages 998-1003.
- Bian, Jiang & Cao, Xuewen & Yang, Wen & Edem, Mawugbe Ayivi & Yin, Pengbo & Jiang, Wenming, 2018. "Supersonic liquefaction properties of natural gas in the Laval nozzle," Energy, Elsevier, vol. 159(C), pages 706-715.
- Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2019. "A comprehensive review of ejector design, performance, and applications," Applied Energy, Elsevier, vol. 240(C), pages 138-172.
- Ohiemi, Israel Enema & Sunsheng, Yang & Singh, Punit & Li, Yanjun & Osman, Fareed, 2023. "Evaluation of energy loss in a low-head axial flow turbine under different blade numbers using entropy production method," Energy, Elsevier, vol. 274(C).
More about this item
Keywords
Suction; Non-equilibrium condensation; Modified model; Power analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019332. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.