IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v241y2022ics0360544221027614.html
   My bibliography  Save this article

Thermodynamic analysis of working fluids: What is the highest performance of the sub- and trans-critical organic Rankine cycles?

Author

Listed:
  • Yang, Fufang
  • Yang, Fubin
  • Liu, Qiang
  • Chu, Qingfu
  • Yang, Zhen
  • Duan, Yuanyuan

Abstract

The thermodynamic performance limits of power cycles are governed not only by the first and second law of thermodynamics, but also by the cycle configuration and working fluid properties. The organic Rankine cycle (ORC) is a promising technology for low-and-medium temperature heat utilization. This work further develops the thermodynamic performance limits analysis framework of sub- and trans-critical ORCs under realistic heat source conditions, and investigates the impact mechanism of key property parameters on system performance. Working fluid thermodynamic properties are characterized using a corresponding state model with 5 property parameters that are usually available in the early stages of system design. The property and system parameters are optimized simultaneously using a multi-objective genetic algorithm. The thermodynamic performance limits, and the optimal working fluid properties and system operation conditions are identified. The obtained limits represent the highest performance of ORC. The obtained optimal property and system parameters represent the desired working fluid and system operation characteristics. The impact mechanism of key property parameters on system performance is discussed in detail in a sensitivity analysis. It is found that the critical temperature is the most important property parameter, and that it changes the preference over efficiency and compactness objectives. The obtained thermodynamic performance limits, optimal parameter sets, and impact mechanism provide insights for working fluid selection in ORC research and implementation.

Suggested Citation

  • Yang, Fufang & Yang, Fubin & Liu, Qiang & Chu, Qingfu & Yang, Zhen & Duan, Yuanyuan, 2022. "Thermodynamic analysis of working fluids: What is the highest performance of the sub- and trans-critical organic Rankine cycles?," Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221027614
    DOI: 10.1016/j.energy.2021.122512
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221027614
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122512?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Desideri, Adriano & Gusev, Sergei & van den Broek, Martijn & Lemort, Vincent & Quoilin, Sylvain, 2016. "Experimental comparison of organic fluids for low temperature ORC (organic Rankine cycle) systems for waste heat recovery applications," Energy, Elsevier, vol. 97(C), pages 460-469.
    2. Maraver, Daniel & Royo, Javier & Lemort, Vincent & Quoilin, Sylvain, 2014. "Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications," Applied Energy, Elsevier, vol. 117(C), pages 11-29.
    3. Mark O. McLinden & J. Steven Brown & Riccardo Brignoli & Andrei F. Kazakov & Piotr A. Domanski, 2017. "Limited options for low-global-warming-potential refrigerants," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
    4. Quoilin, Sylvain & Lemort, Vincent & Lebrun, Jean, 2010. "Experimental study and modeling of an Organic Rankine Cycle using scroll expander," Applied Energy, Elsevier, vol. 87(4), pages 1260-1268, April.
    5. Freeman, James & Hellgardt, Klaus & Markides, Christos N., 2017. "Working fluid selection and electrical performance optimisation of a domestic solar-ORC combined heat and power system for year-round operation in the UK," Applied Energy, Elsevier, vol. 186(P3), pages 291-303.
    6. Eyerer, Sebastian & Dawo, Fabian & Wieland, Christoph & Spliethoff, Hartmut, 2020. "Advanced ORC architecture for geothermal combined heat and power generation," Energy, Elsevier, vol. 205(C).
    7. Oyewunmi, Oyeniyi A. & Taleb, Aly I. & Haslam, Andrew J. & Markides, Christos N., 2016. "On the use of SAFT-VR Mie for assessing large-glide fluorocarbon working-fluid mixtures in organic Rankine cycles," Applied Energy, Elsevier, vol. 163(C), pages 263-282.
    8. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    9. Wang, E.H. & Zhang, H.G. & Fan, B.Y. & Ouyang, M.G. & Zhao, Y. & Mu, Q.H., 2011. "Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery," Energy, Elsevier, vol. 36(5), pages 3406-3418.
    10. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    11. Aljundi, Isam H., 2011. "Effect of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle," Renewable Energy, Elsevier, vol. 36(4), pages 1196-1202.
    12. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. González, Johan & Llovell, Fèlix & Garrido, José Matías & Quinteros-Lama, Héctor, 2023. "A study of the optimal conditions for organic Rankine cycles coupled with vapour compression refrigeration using a rigorous approach based on the Helmholtz energy function," Energy, Elsevier, vol. 285(C).
    2. Wang, Enhua & Mao, Jingwen & Zhang, Bo & Wang, Yongzhen, 2023. "On the CAMD method based on PC-SAFT for working fluid design of a high-temperature organic Rankine cycle," Energy, Elsevier, vol. 263(PD).
    3. Yang, Wenhao & Feng, Huijun & Chen, Lingen & Ge, Yanlin, 2023. "Power and efficiency optimizations of a simple irreversible supercritical organic Rankine cycle," Energy, Elsevier, vol. 278(C).
    4. Yang, Xiaoxian & Yang, Fubin & Yang, Fufang, 2023. "Thermo-economic performance limit analysis of combined heat and power systems for optimal working fluid selections," Energy, Elsevier, vol. 272(C).
    5. Yan, Yinlian & Yang, Fubin & Zhang, Hongguang & Pan, Yachao & Ping, Xu & Ge, Zhong, 2023. "Study on performance evaluation framework and design/ selection guidelines of working fluids for subcritical organic Rankine cycle from molecular structure perspective," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    2. Steven Lecompte & Oyeniyi A. Oyewunmi & Christos N. Markides & Marija Lazova & Alihan Kaya & Martijn Van den Broek & Michel De Paepe, 2017. "Case Study of an Organic Rankine Cycle (ORC) for Waste Heat Recovery from an Electric Arc Furnace (EAF)," Energies, MDPI, vol. 10(5), pages 1-16, May.
    3. Xu, Bin & Rathod, Dhruvang & Yebi, Adamu & Filipi, Zoran & Onori, Simona & Hoffman, Mark, 2019. "A comprehensive review of organic rankine cycle waste heat recovery systems in heavy-duty diesel engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 145-170.
    4. Landelle, Arnaud & Tauveron, Nicolas & Haberschill, Philippe & Revellin, Rémi & Colasson, Stéphane, 2017. "Organic Rankine cycle design and performance comparison based on experimental database," Applied Energy, Elsevier, vol. 204(C), pages 1172-1187.
    5. Kang, Seok Hun, 2016. "Design and preliminary tests of ORC (organic Rankine cycle) with two-stage radial turbine," Energy, Elsevier, vol. 96(C), pages 142-154.
    6. Cavazzini, G. & Bari, S. & Pavesi, G. & Ardizzon, G., 2017. "A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 129(C), pages 42-58.
    7. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Paepe, M., 2015. "Methodical thermodynamic analysis and regression models of organic Rankine cycle architectures for waste heat recovery," Energy, Elsevier, vol. 87(C), pages 60-76.
    8. Li, Jing & Alvi, Jahan Zeb & Pei, Gang & Su, Yuehong & Li, Pengcheng & Gao, Guangtao & Ji, Jie, 2016. "Modelling of organic Rankine cycle efficiency with respect to the equivalent hot side temperature," Energy, Elsevier, vol. 115(P1), pages 668-683.
    9. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    10. Le, Van Long & Feidt, Michel & Kheiri, Abdelhamid & Pelloux-Prayer, Sandrine, 2014. "Performance optimization of low-temperature power generation by supercritical ORCs (organic Rankine cycles) using low GWP (global warming potential) working fluids," Energy, Elsevier, vol. 67(C), pages 513-526.
    11. Yang, Xiaoxian & Yang, Fubin & Yang, Fufang, 2023. "Thermo-economic performance limit analysis of combined heat and power systems for optimal working fluid selections," Energy, Elsevier, vol. 272(C).
    12. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    13. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    14. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    15. Gábor Györke & Axel Groniewsky & Attila R. Imre, 2019. "A Simple Method of Finding New Dry and Isentropic Working Fluids for Organic Rankine Cycle," Energies, MDPI, vol. 12(3), pages 1-11, February.
    16. Ni, Jiaxin & Zhao, Li & Zhang, Zhengtao & Zhang, Ying & Zhang, Jianyuan & Deng, Shuai & Ma, Minglu, 2018. "Dynamic performance investigation of organic Rankine cycle driven by solar energy under cloudy condition," Energy, Elsevier, vol. 147(C), pages 122-141.
    17. Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    18. Oko, C.O.C. & Njoku, I.H., 2017. "Performance analysis of an integrated gas-, steam- and organic fluid-cycle thermal power plant," Energy, Elsevier, vol. 122(C), pages 431-443.
    19. Niu, Jintao & Wang, Jiansheng & Liu, Xueling, 2023. "Thermodynamic and economic analysis of organic Rankine cycle combined with flash cycle and ejector," Energy, Elsevier, vol. 282(C).
    20. Magdalena Santos-Rodriguez, M. & Flores-Tlacuahuac, Antonio & Zavala, Victor M., 2017. "A stochastic optimization approach for the design of organic fluid mixtures for low-temperature heat recovery," Applied Energy, Elsevier, vol. 198(C), pages 145-159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221027614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.