IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipds0360544221025275.html
   My bibliography  Save this article

Evaluation and extension of the load and fuel flexibility limits of a stratified downdraft gasifier

Author

Listed:
  • Zachl, A.
  • Buchmayr, M.
  • Gruber, J.
  • Anca-Couce, A.
  • Scharler, R.
  • Hochenauer, C.

Abstract

The small-scale biomass gasifiers' application for CHP in conventional households is still inhibited by their inflexible operating conditions, which do often not meet the user's desires of yielding varying loads and switching between any available fuels. Thus, the present work aims to identify the gasifier's flexibility limits by investigating sudden steps in load and fuel water content in a woodchips-driven, stratified downdraft gasifier with a 90-kW nominal fuel load. In contrast to former work, the focus was set on the transient processes, during which the product gas composition and the gasifier bed temperatures were continuously monitored. The evaluations revealed that the gasifier produces a continuously high and almost load independent product gas quality in the range of ±20% of the nominal load, even throughout sudden load changes. Steps of 8 m% fuel water content from dry to wet fuel turned out to be the maximum manageable step size without additional measures. Switches from wet to dry fuel required the previously introduced methods of exhaust gas recirculation and water injection. These methods successfully enlarged the allowable step to over 8 m% fuel water content. These promising results will allow a future more versatile and user-optimized operation of stratified downdraft gasifiers.

Suggested Citation

  • Zachl, A. & Buchmayr, M. & Gruber, J. & Anca-Couce, A. & Scharler, R. & Hochenauer, C., 2022. "Evaluation and extension of the load and fuel flexibility limits of a stratified downdraft gasifier," Energy, Elsevier, vol. 239(PD).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pd:s0360544221025275
    DOI: 10.1016/j.energy.2021.122279
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221025275
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122279?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rahman, MD Mashiur & Henriksen, Ulrik Birk & Ahrenfeldt, Jesper & Arnavat, Maria Puig, 2020. "Design, construction and operation of a low-tar biomass (LTB) gasifier for power applications," Energy, Elsevier, vol. 204(C).
    2. Kulkarni, Avanti & Baker, Ryan & Abdoulmomine, Nourredine & Adhikari, Sushil & Bhavnani, Sushil, 2016. "Experimental study of torrefied pine as a gasification fuel using a bubbling fluidized bed gasifier," Renewable Energy, Elsevier, vol. 93(C), pages 460-468.
    3. Benedikt, Florian & Kuba, Matthias & Schmid, Johannes Christian & Müller, Stefan & Hofbauer, Hermann, 2019. "Assessment of correlations between tar and product gas composition in dual fluidized bed steam gasification for online tar prediction," Applied Energy, Elsevier, vol. 238(C), pages 1138-1149.
    4. Martínez, Laura V. & Rubiano, Jairo E. & Figueredo, Manuel & Gómez, María F., 2020. "Experimental study on the performance of gasification of corncobs in a downdraft fixed bed gasifier at various conditions," Renewable Energy, Elsevier, vol. 148(C), pages 1216-1226.
    5. Patuzzi, Francesco & Basso, Daniele & Vakalis, Stergios & Antolini, Daniele & Piazzi, Stefano & Benedetti, Vittoria & Cordioli, Eleonora & Baratieri, Marco, 2021. "State-of-the-art of small-scale biomass gasification systems: An extensive and unique monitoring review," Energy, Elsevier, vol. 223(C).
    6. Cristina Moliner & Elisabetta Arato & Filippo Marchelli, 2021. "Current Status of Energy Production from Solid Biomass in Southern Italy," Energies, MDPI, vol. 14(9), pages 1-21, April.
    7. Janajreh, Isam & Adeyemi, Idowu & Raza, Syed Shabbar & Ghenai, Chaouki, 2021. "A review of recent developments and future prospects in gasification systems and their modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Situmorang, Yohanes Andre & Zhao, Zhongkai & Yoshida, Akihiro & Abudula, Abuliti & Guan, Guoqing, 2020. "Small-scale biomass gasification systems for power generation (<200 kW class): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    9. Pio, D.T. & Tarelho, L.A.C., 2021. "Industrial gasification systems (>3 MWth) for bioenergy in Europe: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Anca-Couce, A. & Hochenauer, C. & Scharler, R., 2021. "Bioenergy technologies, uses, market and future trends with Austria as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Yahaya, Ahmad Zubair & Somalu, Mahendra Rao & Muchtar, Andanastuti & Sulaiman, Shaharin Anwar & Wan Daud, Wan Ramli, 2019. "Effect of particle size and temperature on gasification performance of coconut and palm kernel shells in downdraft fixed-bed reactor," Energy, Elsevier, vol. 175(C), pages 931-940.
    12. Elsner, Witold & Wysocki, Marian & Niegodajew, Paweł & Borecki, Roman, 2017. "Experimental and economic study of small-scale CHP installation equipped with downdraft gasifier and internal combustion engine," Applied Energy, Elsevier, vol. 202(C), pages 213-227.
    13. Huchon, Valentin & Pinta, François & Commandré, Jean-Michel & Van De Steene, Laurent, 2020. "How electrical engine power load and feedstock moisture content affect the performance of a fixed bed gasification genset," Energy, Elsevier, vol. 197(C).
    14. Sazali, S.N. & Al-attab, K.A. & Zainal, Z.A., 2019. "Gasification enhancement and tar reduction using air fogging system in a double walled downdraft biomass gasifier," Energy, Elsevier, vol. 186(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Igor Donskoy, 2023. "Particle Agglomeration of Biomass and Plastic Waste during Their Thermochemical Fixed-Bed Conversion," Energies, MDPI, vol. 16(12), pages 1-25, June.
    2. Zachl, Angelika & Buchmayr, Markus & Gruber, Johann & Anca-Couce, Andrés & Scharler, Robert & Hochenauer, Christoph, 2024. "Experimental-data-based, easy-to-use product gas composition prediction of a commercial open-top gasifier based on commercially used properties of softwood chips," Renewable Energy, Elsevier, vol. 226(C).
    3. Zachl, A. & Soria-Verdugo, A. & Buchmayr, M. & Gruber, J. & Anca-Couce, A. & Scharler, R. & Hochenauer, C., 2022. "Stratified downdraft gasification of wood chips with a significant bark content," Energy, Elsevier, vol. 261(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zachl, Angelika & Buchmayr, Markus & Gruber, Johann & Anca-Couce, Andrés & Scharler, Robert & Hochenauer, Christoph, 2024. "Experimental-data-based, easy-to-use product gas composition prediction of a commercial open-top gasifier based on commercially used properties of softwood chips," Renewable Energy, Elsevier, vol. 226(C).
    2. Zachl, A. & Soria-Verdugo, A. & Buchmayr, M. & Gruber, J. & Anca-Couce, A. & Scharler, R. & Hochenauer, C., 2022. "Stratified downdraft gasification of wood chips with a significant bark content," Energy, Elsevier, vol. 261(PB).
    3. Wang, Linzheng & Zhang, Ruizhi & Deng, Ruiqu & Liu, Zeqing & Luo, Yonghao, 2023. "Comprehensive parametric study of fixed-bed co-gasification process through Multiple Thermally Thick Particle (MTTP) model," Applied Energy, Elsevier, vol. 348(C).
    4. Díaz González, Carlos A. & Pacheco Sandoval, Leonardo, 2020. "Sustainability aspects of biomass gasification systems for small power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Wu, Wei & Taipabu, Muhammad Ikhsan & Chang, Wei-Chen & Viswanathan, Karthickeyan & Xie, Yi-Lin & Kuo, Po-Chih, 2022. "Economic dispatch of torrefied biomass polygeneration systems considering power/SNG grid demands," Renewable Energy, Elsevier, vol. 196(C), pages 707-719.
    6. Yang, Shiliang & Zhou, Tao & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "Dynamical and thermal property of rising bubbles in the bubbling fluidized biomass gasifier with wide particle size distribution," Applied Energy, Elsevier, vol. 259(C).
    7. Montagnaro, Fabio & Zaccariello, Lucio, 2023. "Performance assessment of a demonstration-scale biomass gasification power plant using material and energy flow analyses," Energy, Elsevier, vol. 284(C).
    8. Reyes, Y.A. & Pérez, M. & Barrera, E.L. & Martínez, Y. & Cheng, K.K., 2022. "Thermochemical conversion processes of Dichrostachys cinerea as a biofuel: A review of the Cuban case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    9. Čespiva, Jakub & Wnukowski, Mateusz & Niedzwiecki, Lukasz & Skřínský, Jan & Vereš, Ján & Ochodek, Tadeáš & Pawlak-Kruczek, Halina & Borovec, Karel, 2020. "Characterization of tars from a novel, pilot scale, biomass gasifier working under low equivalence ratio regime," Renewable Energy, Elsevier, vol. 159(C), pages 775-785.
    10. Pio, D.T. & Tarelho, L.A.C., 2021. "Industrial gasification systems (>3 MWth) for bioenergy in Europe: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. HajiHashemi, MohammadSina & Mazhkoo, Shahin & Dadfar, Hossein & Livani, Ehsan & Naseri Varnosefaderani, Aliakbar & Pourali, Omid & Najafi Nobar, Shima & Dutta, Animesh, 2023. "Combined heat and power production in a pilot-scale biomass gasification system: Experimental study and kinetic simulation using ASPEN Plus," Energy, Elsevier, vol. 276(C).
    12. Diego Perrone & Angelo Algieri & Pietropaolo Morrone & Teresa Castiglione, 2021. "Energy and Economic Investigation of a Biodiesel-Fired Engine for Micro-Scale Cogeneration," Energies, MDPI, vol. 14(2), pages 1-28, January.
    13. Rey, J.R.C. & Pio, D.T. & Tarelho, L.A.C., 2021. "Biomass direct gasification for electricity generation and natural gas replacement in the lime kilns of the pulp and paper industry: A techno-economic analysis," Energy, Elsevier, vol. 237(C).
    14. Pio, D.T. & Gomes, H.G.M.F. & Tarelho, L.A.C. & Vilas-Boas, A.C.M. & Matos, M.A.A. & Lemos, F.M.S., 2022. "Superheated steam injection as primary measure to improve producer gas quality from biomass air gasification in an autothermal pilot-scale gasifier," Renewable Energy, Elsevier, vol. 181(C), pages 1223-1236.
    15. Dovichi Filho, Fernando Bruno & Lora, Electo Eduardo Silva & Palacio, Jose Carlos Escobar & Venturini, Osvaldo José & Jaén, René Lesme, 2023. "An approach to technology selection in bioelectricity technical potential assessment: A Brazilian case study," Energy, Elsevier, vol. 272(C).
    16. Porcu, Andrea & Xu, Yupeng & Mureddu, Mauro & Dessì, Federica & Shahnam, Mehrdad & Rogers, William A. & Sastri, Bhima S. & Pettinau, Alberto, 2021. "Experimental validation of a multiphase flow model of a lab-scale fluidized-bed gasification unit," Applied Energy, Elsevier, vol. 293(C).
    17. Yousef, Samy & Eimontas, Justas & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2022. "Gasification kinetics of char derived from metallised food packaging plastics waste pyrolysis," Energy, Elsevier, vol. 239(PB).
    18. Shan Gu & Maosheng Liu & Xiaoye Liang, 2024. "Analysis of Operational Problems and Improvement Measures for Biomass-Circulating Fluidized Bed Gasifiers," Energies, MDPI, vol. 17(2), pages 1-12, January.
    19. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    20. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pd:s0360544221025275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.