IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v197y2020ics0360544220302516.html
   My bibliography  Save this article

How electrical engine power load and feedstock moisture content affect the performance of a fixed bed gasification genset

Author

Listed:
  • Huchon, Valentin
  • Pinta, François
  • Commandré, Jean-Michel
  • Van De Steene, Laurent

Abstract

Performance of wood gasification genset is sensitive to the moisture content in the feedstock and the electrical load (demand of users). This study investigates the influence of these process parameters on the electrical efficiency of the genset (ηglobal), the electrical engine efficiency (ηengine), the cold gas efficiency (CGE), and the syngas composition. Experimental tests were carried out by varying the moisture content from 11% to 23% and the electrical power from 4.7 kW to 12.8 kW on a commercial gasifier equipped with precise measuring tools. The increase of the performance when the electrical load is increased or when the moisture content in the wood chips is decreased is both quantified and discussed. Such behaviour was mainly explained by differences in engine filling rates and reactor temperatures.

Suggested Citation

  • Huchon, Valentin & Pinta, François & Commandré, Jean-Michel & Van De Steene, Laurent, 2020. "How electrical engine power load and feedstock moisture content affect the performance of a fixed bed gasification genset," Energy, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:energy:v:197:y:2020:i:c:s0360544220302516
    DOI: 10.1016/j.energy.2020.117144
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220302516
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaves, Luiz Inácio & da Silva, Marcelo José & de Souza, Samuel Nelson Melegari & Secco, Deonir & Rosa, Helton Aparecido & Nogueira, Carlos Eduardo Camargo & Frigo, Elisandro Pires, 2016. "Small-scale power generation analysis: Downdraft gasifier coupled to engine generator set," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 491-498.
    2. Raman, P. & Ram, N.K., 2013. "Performance analysis of an internal combustion engine operated on producer gas, in comparison with the performance of the natural gas and diesel engines," Energy, Elsevier, vol. 63(C), pages 317-333.
    3. Sansaniwal, S.K. & Pal, K. & Rosen, M.A. & Tyagi, S.K., 2017. "Recent advances in the development of biomass gasification technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 363-384.
    4. Elsner, Witold & Wysocki, Marian & Niegodajew, Paweł & Borecki, Roman, 2017. "Experimental and economic study of small-scale CHP installation equipped with downdraft gasifier and internal combustion engine," Applied Energy, Elsevier, vol. 202(C), pages 213-227.
    5. Hernández, J.J. & Ballesteros, R. & Aranda, G., 2013. "Characterisation of tars from biomass gasification: Effect of the operating conditions," Energy, Elsevier, vol. 50(C), pages 333-342.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zachl, A. & Buchmayr, M. & Gruber, J. & Anca-Couce, A. & Scharler, R. & Hochenauer, C., 2022. "Evaluation and extension of the load and fuel flexibility limits of a stratified downdraft gasifier," Energy, Elsevier, vol. 239(PD).
    2. Zachl, Angelika & Buchmayr, Markus & Gruber, Johann & Anca-Couce, Andrés & Scharler, Robert & Hochenauer, Christoph, 2024. "Experimental-data-based, easy-to-use product gas composition prediction of a commercial open-top gasifier based on commercially used properties of softwood chips," Renewable Energy, Elsevier, vol. 226(C).
    3. Huchon, V. & Martin, E. & Pinta, F. & Commandré, J.M. & Van de steene, L., 2024. "Conversion in a char bed reactor of tars and syngas from a wood gasifier," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Díaz González, Carlos A. & Pacheco Sandoval, Leonardo, 2020. "Sustainability aspects of biomass gasification systems for small power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Li, C.Y. & Deethayat, T. & Wu, J.Y. & Kiatsiriroat, T. & Wang, R.Z., 2018. "Simulation and evaluation of a biomass gasification-based combined cooling, heating, and power system integrated with an organic Rankine cycle," Energy, Elsevier, vol. 158(C), pages 238-255.
    3. Alexander N. Kozlov & Nikita V. Tomin & Denis N. Sidorov & Electo E. S. Lora & Victor G. Kurbatsky, 2020. "Optimal Operation Control of PV-Biomass Gasifier-Diesel-Hybrid Systems Using Reinforcement Learning Techniques," Energies, MDPI, vol. 13(10), pages 1-20, May.
    4. Marco Puglia & Nicolò Morselli & Simone Pedrazzi & Paolo Tartarini & Giulio Allesina & Alberto Muscio, 2021. "Specific and Cumulative Exhaust Gas Emissions in Micro-Scale Generators Fueled by Syngas from Biomass Gasification," Sustainability, MDPI, vol. 13(6), pages 1-13, March.
    5. Laurene Desclaux & Amaro Olimpio Pereira, 2024. "Residual Biomass Gasification for Small-Scale Decentralized Electricity Production: Business Models for Lower Societal Costs," Energies, MDPI, vol. 17(8), pages 1-26, April.
    6. Elsner, Witold & Wysocki, Marian & Niegodajew, Paweł & Borecki, Roman, 2017. "Experimental and economic study of small-scale CHP installation equipped with downdraft gasifier and internal combustion engine," Applied Energy, Elsevier, vol. 202(C), pages 213-227.
    7. Vargas-Salgado, Carlos & Águila-León, Jesús & Alfonso-Solar, David & Malmquist, Anders, 2022. "Simulations and experimental study to compare the behavior of a genset running on gasoline or syngas for small scale power generation," Energy, Elsevier, vol. 244(PA).
    8. Patuzzi, Francesco & Prando, Dario & Vakalis, Stergios & Rizzo, Andrea Maria & Chiaramonti, David & Tirler, Werner & Mimmo, Tanja & Gasparella, Andrea & Baratieri, Marco, 2016. "Small-scale biomass gasification CHP systems: Comparative performance assessment and monitoring experiences in South Tyrol (Italy)," Energy, Elsevier, vol. 112(C), pages 285-293.
    9. Martínez González, Aldemar & Lesme Jaén, René & Silva Lora, Electo Eduardo, 2020. "Thermodynamic assessment of the integrated gasification-power plant operating in the sawmill industry: An energy and exergy analysis," Renewable Energy, Elsevier, vol. 147(P1), pages 1151-1163.
    10. Zhang, Ziyin & Pang, Shusheng, 2019. "Experimental investigation of tar formation and producer gas composition in biomass steam gasification in a 100 kW dual fluidised bed gasifier," Renewable Energy, Elsevier, vol. 132(C), pages 416-424.
    11. Rey, J.R.C. & Pio, D.T. & Tarelho, L.A.C., 2021. "Biomass direct gasification for electricity generation and natural gas replacement in the lime kilns of the pulp and paper industry: A techno-economic analysis," Energy, Elsevier, vol. 237(C).
    12. J. R. Copa & C. E. Tuna & J. L. Silveira & R. A. M. Boloy & P. Brito & V. Silva & J. Cardoso & D. Eusébio, 2020. "Techno-Economic Assessment of the Use of Syngas Generated from Biomass to Feed an Internal Combustion Engine," Energies, MDPI, vol. 13(12), pages 1-31, June.
    13. Hernández, J.J. & Lapuerta, M. & Barba, J., 2015. "Effect of partial replacement of diesel or biodiesel with gas from biomass gasification in a diesel engine," Energy, Elsevier, vol. 89(C), pages 148-157.
    14. Jia, Junxi & Shu, Lingyun & Zang, Guiyan & Xu, Lijun & Abudula, Abuliti & Ge, Kun, 2018. "Energy analysis and techno-economic assessment of a co-gasification of woody biomass and animal manure, solid oxide fuel cells and micro gas turbine hybrid system," Energy, Elsevier, vol. 149(C), pages 750-761.
    15. Bhoi, Prakashbhai R. & Huhnke, Raymond L. & Kumar, Ajay & Thapa, Sunil & Indrawan, Natarianto, 2018. "Scale-up of a downdraft gasifier system for commercial scale mobile power generation," Renewable Energy, Elsevier, vol. 118(C), pages 25-33.
    16. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    17. Liu, Zihan & Li, Pan & Chang, Chun & Wang, Xianhua & Song, Jiande & Fang, Shuqi & Pang, Shusheng, 2022. "Influence of metal chloride modified biochar on products characteristics from biomass catalytic pyrolysis," Energy, Elsevier, vol. 250(C).
    18. Patrik Šuhaj & Jakub Husár & Juma Haydary, 2020. "Gasification of RDF and Its Components with Tire Pyrolysis Char as Tar-Cracking Catalyst," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    19. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    20. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:197:y:2020:i:c:s0360544220302516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.