IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v117y2020ics136403211930694x.html
   My bibliography  Save this article

Small-scale biomass gasification systems for power generation (<200 kW class): A review

Author

Listed:
  • Situmorang, Yohanes Andre
  • Zhao, Zhongkai
  • Yoshida, Akihiro
  • Abudula, Abuliti
  • Guan, Guoqing

Abstract

Biomass gasification to provide gas fuels for power generation is considered as one of the best ways for substituting fossil fuels. Large scale unit of biomass gasification with capacity over 2 MW is preferably chosen due to its efficiency to investment ratio even though collecting large amount of biomass takes high cost. To effectively utilize the biomass resources in local and regional areas, it is expected to apply more small-scale biomass gasifiers with a capacity less than 200 kW for a small community or even a family. This will make bioenergy more popular in our daily life. In this review, developed gasification techniques and the effects of biomass composition, gasifying agents, biomass particle size, operating condition of gasification (temperature and pressure) on the gasification efficiency, and type of gasifier are introduced at first and then, the research and development (R&D) and application progresses of the small-scale biomass gasification systems with capacities of 10–200 kW over the world are summarized, and the challenges and prospects in the future renewable energy markets are analyzed and discussed. European, North American and Asia areas are developing and begin to apply various small-scale biomass gasification systems, and African, Latin America, and Oceania countries should be the growing and promising potential regions for the application of this technique in the future, especially in the developing countries. In addition, lowering investment cost and making supporting policies are significantly required to utilize such small-scale renewable energy system.

Suggested Citation

  • Situmorang, Yohanes Andre & Zhao, Zhongkai & Yoshida, Akihiro & Abudula, Abuliti & Guan, Guoqing, 2020. "Small-scale biomass gasification systems for power generation (<200 kW class): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
  • Handle: RePEc:eee:rensus:v:117:y:2020:i:c:s136403211930694x
    DOI: 10.1016/j.rser.2019.109486
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211930694X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109486?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chin, May Ji & Poh, Phaik Eong & Tey, Beng Ti & Chan, Eng Seng & Chin, Kit Ling, 2013. "Biogas from palm oil mill effluent (POME): Opportunities and challenges from Malaysia's perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 717-726.
    2. Ramos, Ana & Monteiro, Eliseu & Silva, Valter & Rouboa, Abel, 2018. "Co-gasification and recent developments on waste-to-energy conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 380-398.
    3. Situmorang, Yohanes Andre & Zhao, Zhongkai & Yoshida, Akihiro & Kasai, Yutaka & Abudula, Abuliti & Guan, Guoqing, 2019. "Potential power generation on a small-scale separated-type biomass gasification system," Energy, Elsevier, vol. 179(C), pages 19-29.
    4. Beenackers, A.A.C.M., 1999. "Biomass gasification in moving beds, a review of European technologies," Renewable Energy, Elsevier, vol. 16(1), pages 1180-1186.
    5. Ghosh, Sonaton & Das, Tuhin K. & Jash, Tushar, 2004. "Sustainability of decentralized woodfuel-based power plant: an experience in India," Energy, Elsevier, vol. 29(1), pages 155-166.
    6. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    7. Guan, Guoqing & Kaewpanha, Malinee & Hao, Xiaogang & Abudula, Abuliti, 2016. "Catalytic steam reforming of biomass tar: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 450-461.
    8. Emami Taba, Leila & Irfan, Muhammad Faisal & Wan Daud, Wan Ashri Mohd & Chakrabarti, Mohammed Harun, 2012. "The effect of temperature on various parameters in coal, biomass and CO-gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5584-5596.
    9. Bedi, Arjun S. & Sparrow, Robert & Tasciotti, Luca, 2017. "The impact of a household biogas programme on energy use and expenditure in East Java," Energy Economics, Elsevier, vol. 68(C), pages 66-76.
    10. Ajay Kumar & David D. Jones & Milford A. Hanna, 2009. "Thermochemical Biomass Gasification: A Review of the Current Status of the Technology," Energies, MDPI, vol. 2(3), pages 1-26, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inayat, Muddasser & Sulaiman, Shaharin A. & Kurnia, Jundika Candra & Shahbaz, Muhammad, 2019. "Effect of various blended fuels on syngas quality and performance in catalytic co-gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 252-267.
    2. Rakesh N, & Dasappa, S., 2018. "A critical assessment of tar generated during biomass gasification - Formation, evaluation, issues and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1045-1064.
    3. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    4. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    5. Ascher, Simon & Watson, Ian & You, Siming, 2022. "Machine learning methods for modelling the gasification and pyrolysis of biomass and waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Guan, Guoqing & Kaewpanha, Malinee & Hao, Xiaogang & Abudula, Abuliti, 2016. "Catalytic steam reforming of biomass tar: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 450-461.
    7. Ruiz, J.A. & Juárez, M.C. & Morales, M.P. & Muñoz, P. & Mendívil, M.A., 2013. "Biomass gasification for electricity generation: Review of current technology barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 174-183.
    8. Yahaya, Ahmad Zubair & Somalu, Mahendra Rao & Muchtar, Andanastuti & Sulaiman, Shaharin Anwar & Wan Daud, Wan Ramli, 2019. "Effect of particle size and temperature on gasification performance of coconut and palm kernel shells in downdraft fixed-bed reactor," Energy, Elsevier, vol. 175(C), pages 931-940.
    9. Xiao, Juan & Wang, Simin & Ye, Shupei & Dong, Jiayu & Wen, Jian & Zhang, Zaoxiao, 2020. "Thermo-economic optimization of gasification process with coal water slurry preheating technology," Energy, Elsevier, vol. 199(C).
    10. Rey, J.R.C. & Pio, D.T. & Tarelho, L.A.C., 2021. "Biomass direct gasification for electricity generation and natural gas replacement in the lime kilns of the pulp and paper industry: A techno-economic analysis," Energy, Elsevier, vol. 237(C).
    11. Li, Longzhi & Yang, Zhijuan & Qin, Xiaomin & Chen, Jian & Yan, Keshuo & Zou, Guifu & Peng, Zhuoyan & Wang, Fumao & Song, Zhanlong & Ma, Chunyuan, 2019. "Toluene microwave-assisted reforming with CO2 or a mixed agent of CO2-H2O on Fe-doped activated biochar," Energy, Elsevier, vol. 177(C), pages 358-366.
    12. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Salem, Ahmed M. & Elsherbiny, Khaled, 2022. "Innovative concept for the effect of changing gasifying medium and injection points on syngas quality: Towards higher H2 production, and Free-CO2 emissions," Energy, Elsevier, vol. 261(PB).
    14. Buragohain, Buljit & Mahanta, Pinakeswar & Moholkar, Vijayanand S., 2010. "Biomass gasification for decentralized power generation: The Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 73-92, January.
    15. Ismail, Tamer M. & Ramos, Ana & Monteiro, Eliseu & El-Salam, M. Abd & Rouboa, Abel, 2020. "Parametric studies in the gasification agent and fluidization velocity during oxygen-enriched gasification of biomass in a pilot-scale fluidized bed: Experimental and numerical assessment," Renewable Energy, Elsevier, vol. 147(P1), pages 2429-2439.
    16. Situmorang, Yohanes Andre & Zhao, Zhongkai & Yoshida, Akihiro & Kasai, Yutaka & Abudula, Abuliti & Guan, Guoqing, 2019. "Potential power generation on a small-scale separated-type biomass gasification system," Energy, Elsevier, vol. 179(C), pages 19-29.
    17. Situmorang, Yohanes Andre & Zhao, Zhongkai & An, Ping & Yu, Tao & Rizkiana, Jenny & Abudula, Abuliti & Guan, Guoqing, 2020. "A novel system of biomass-based hydrogen production by combining steam bio-oil reforming and chemical looping process," Applied Energy, Elsevier, vol. 268(C).
    18. Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
    19. Ramos, Ana & Rouboa, Abel, 2020. "Syngas production strategies from biomass gasification: Numerical studies for operational conditions and quality indexes," Renewable Energy, Elsevier, vol. 155(C), pages 1211-1221.
    20. Abdulyekeen, Kabir Abogunde & Umar, Ahmad Abulfathi & Patah, Muhamad Fazly Abdul & Daud, Wan Mohd Ashri Wan, 2021. "Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:117:y:2020:i:c:s136403211930694x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.