IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipcs0360544221024105.html
   My bibliography  Save this article

Energy integration of solar assisted Multiple Stage Evaporator and optimum parameter selection

Author

Listed:
  • Pati, Smitarani
  • Verma, Om Prakash

Abstract

To reduce the conventional energy utilization in the pulp and paper mill, exploitation of renewable energy may provide a significant energy saving mostly in energy intensive subunits such as Multiple Stage Evaporator (MSE). MSE is used to concentrate the weak black liquor, a reach source of bio energy. Hence, this work explores the performance analysis of MSE with various proposed Energy Reduction Schemes (ERSs): Thermo-Vapor Compressor, Steam Split, Feed Split, Feed Preheater, and Flash Tanks. This analysis has been intended to develop the steady-state nonlinear energy models for proposed ERSs integrated MSE that translated it into a single objective unconstraint nonlinear optimization problem. Further, different optimization approaches (nonlinear programing and metaheuristics) have been employed to search the optimum process parameters and hence, maximize the energy efficiency. Moreover, to utilize the waste heat of condensate, feed, and product, flash tanks have been integrated with MSE which further improves the energy efficiency by 3.9% and 83% than that of base case model. Finally, the LFR solar field has been integrated to reduce the load of conventional energy utilization and ensures the self-sustainability of the paper mill by supplying the required amount of heat (3,399 kW) for the proposed hybrid MSE configuration.

Suggested Citation

  • Pati, Smitarani & Verma, Om Prakash, 2022. "Energy integration of solar assisted Multiple Stage Evaporator and optimum parameter selection," Energy, Elsevier, vol. 239(PC).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221024105
    DOI: 10.1016/j.energy.2021.122162
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221024105
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Palenzuela, Patricia & Zaragoza, Guillermo & Alarcón-Padilla, Diego C. & Guillén, Elena & Ibarra, Mercedes & Blanco, Julián, 2011. "Assessment of different configurations for combined parabolic-trough (PT) solar power and desalination plants in arid regions," Energy, Elsevier, vol. 36(8), pages 4950-4958.
    2. Khanam, Shabina & Mohanty, Bikash, 2010. "Energy reduction schemes for multiple effect evaporator systems," Applied Energy, Elsevier, vol. 87(4), pages 1102-1111, April.
    3. Om Prakash Verma & Suryakant & Gaurav Manik, 2017. "Solution of SNLAE model of backward feed multiple effect evaporator system using genetic algorithm approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 63-78, March.
    4. Karlsson, Magnus, 2011. "The MIND method: A decision support for optimization of industrial energy systems - Principles and case studies," Applied Energy, Elsevier, vol. 88(3), pages 577-589, March.
    5. Sharan, Prashant & Bandyopadhyay, Santanu, 2016. "Integration of thermo-vapor compressor with multiple-effect evaporator," Applied Energy, Elsevier, vol. 184(C), pages 560-573.
    6. Kaya, Durmus & Ibrahim Sarac, H., 2007. "Mathematical modeling of multiple-effect evaporators and energy economy," Energy, Elsevier, vol. 32(8), pages 1536-1542.
    7. Verma, Om Prakash & Manik, Gaurav & Sethi, Sushant Kumar, 2019. "A comprehensive review of renewable energy source on energy optimization of black liquor in MSE using steady and dynamic state modeling, simulation and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 90-109.
    8. Sharaf, M.A. & Nafey, A.S. & García-Rodríguez, Lourdes, 2011. "Thermo-economic analysis of solar thermal power cycles assisted MED-VC (multi effect distillation-vapor compression) desalination processes," Energy, Elsevier, vol. 36(5), pages 2753-2764.
    9. Verma, Om Prakash & Mohammed, Toufiq Haji & Mangal, Shubham & Manik, Gaurav, 2017. "Minimization of energy consumption in multi-stage evaporator system of Kraft recovery process using Interior-Point Method," Energy, Elsevier, vol. 129(C), pages 148-157.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verma, Om Prakash & Manik, Gaurav & Sethi, Sushant Kumar, 2019. "A comprehensive review of renewable energy source on energy optimization of black liquor in MSE using steady and dynamic state modeling, simulation and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 90-109.
    2. Goel, Anubhav & Manik, Gaurav & Verma, Om Prakash, 2023. "Integration of a parabolic trough solar collector with an energy-intensive multi-effect evaporator: A move towards industrial decarbonization," Energy, Elsevier, vol. 279(C).
    3. Ahmetović, Elvis & Ibrić, Nidret & Kravanja, Zdravko & Grossmann, Ignacio E. & Maréchal, François & Čuček, Lidija & Kermani, Maziar, 2018. "Simultaneous optimisation and heat integration of evaporation systems including mechanical vapour recompression and background process," Energy, Elsevier, vol. 158(C), pages 1160-1191.
    4. Petersen, Nils Hendrik & Arras, Maximilian & Wirsum, Manfred & Ma, Linwei, 2024. "Integration of large-scale heat pumps to assist sustainable water desalination and district cooling," Energy, Elsevier, vol. 289(C).
    5. Sharan, Prashant & Bandyopadhyay, Santanu, 2016. "Energy optimization in parallel/cross feed multiple-effect evaporator based desalination system," Energy, Elsevier, vol. 111(C), pages 756-767.
    6. Om Prakash Verma & Toufiq Haji Mohammed & Shubham Mangal & Gaurav Manik, 2018. "Optimization of steam economy and consumption of heptad’s effect evaporator system in Kraft recovery process," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(1), pages 111-130, February.
    7. Mesfun, Sennai & Toffolo, Andrea, 2013. "Optimization of process integration in a Kraft pulp and paper mill – Evaporation train and CHP system," Applied Energy, Elsevier, vol. 107(C), pages 98-110.
    8. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    9. Li, Chennan & Goswami, D. Yogi & Shapiro, Andrew & Stefanakos, Elias K. & Demirkaya, Gokmen, 2012. "A new combined power and desalination system driven by low grade heat for concentrated brine," Energy, Elsevier, vol. 46(1), pages 582-595.
    10. Wang, Gang & Dong, Boyi & Chen, Zeshao, 2021. "Design and behaviour estimate of a novel concentrated solar-driven power and desalination system using S–CO2 Brayton cycle and MSF technology," Renewable Energy, Elsevier, vol. 176(C), pages 555-564.
    11. Kouta, Amine & Al-Sulaiman, Fahad A. & Atif, Maimoon, 2017. "Energy analysis of a solar driven cogeneration system using supercritical CO2 power cycle and MEE-TVC desalination system," Energy, Elsevier, vol. 119(C), pages 996-1009.
    12. Verma, Om Prakash & Mohammed, Toufiq Haji & Mangal, Shubham & Manik, Gaurav, 2017. "Minimization of energy consumption in multi-stage evaporator system of Kraft recovery process using Interior-Point Method," Energy, Elsevier, vol. 129(C), pages 148-157.
    13. Hamid, Mohammed O.A. & Zhang, Bo & Yang, Luopeng, 2014. "Application of field synergy principle for optimization fluid flow and convective heat transfer in a tube bundle of a pre-heater," Energy, Elsevier, vol. 76(C), pages 241-253.
    14. He, Wei & Wang, Jihong, 2017. "Feasibility study of energy storage by concentrating/desalinating water: Concentrated Water Energy Storage," Applied Energy, Elsevier, vol. 185(P1), pages 872-884.
    15. Uche, J. & Círez, F. & Bayod, A.A. & Martínez, A., 2013. "On-grid and off-grid batch-ED (electrodialysis) process: Simulation and experimental tests," Energy, Elsevier, vol. 57(C), pages 44-54.
    16. Janghorban Esfahani, Iman & Kang, Yong Tae & Yoo, ChangKyoo, 2014. "A high efficient combined multi-effect evaporation–absorption heat pump and vapor-compression refrigeration part 1: Energy and economic modeling and analysis," Energy, Elsevier, vol. 75(C), pages 312-326.
    17. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    18. Francisco Berenguel-Felices & Antonio Lara-Galera & María Belén Muñoz-Medina, 2020. "Requirements for the Construction of New Desalination Plants into a Framework of Sustainability," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    19. Yin, Linfei & Wang, Tao & Zheng, Baomin, 2021. "Analytical adaptive distributed multi-objective optimization algorithm for optimal power flow problems," Energy, Elsevier, vol. 216(C).
    20. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221024105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.