IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i8p4950-4958.html
   My bibliography  Save this article

Assessment of different configurations for combined parabolic-trough (PT) solar power and desalination plants in arid regions

Author

Listed:
  • Palenzuela, Patricia
  • Zaragoza, Guillermo
  • Alarcón-Padilla, Diego C.
  • Guillén, Elena
  • Ibarra, Mercedes
  • Blanco, Julián

Abstract

The combination of desalination technology into concentrating solar power (CSP) plants needs to be considered for the planned installation of CSP plants in arid regions. There are interesting synergies between the two technologies, like the possibility of substituting the condenser of the power cycle for a thermal desalination unit. This paper presents a thermodynamic evaluation of different configurations for coupling parabolic-trough (PT) solar power plants and desalination facilities in a dry location representing the Middle East and North Africa (MENA) region. The integration of a low-temperature multi-effect distillation (LT-MED) plant fed by the steam at the outlet of the turbine replacing the condenser of the power cycle has been simulated and compared with the combination of CSP with a reverse osmosis (RO) plant. Furthermore, an additional novel concept of concentrating solar power and desalination (CSP+D) has been evaluated: a LT-MED powered by the steam obtained from a thermal vapour compressor (TVC) using the exhaust steam of the CSP plant as entrained vapour and steam extracted from the turbine as the motive vapour of the ejector. This new concept (LT-MED-TVC) has been analyzed and compared with the others, evaluating its optimization for the integration into a CSP plant by considering different extractions of the turbine.

Suggested Citation

  • Palenzuela, Patricia & Zaragoza, Guillermo & Alarcón-Padilla, Diego C. & Guillén, Elena & Ibarra, Mercedes & Blanco, Julián, 2011. "Assessment of different configurations for combined parabolic-trough (PT) solar power and desalination plants in arid regions," Energy, Elsevier, vol. 36(8), pages 4950-4958.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:8:p:4950-4958
    DOI: 10.1016/j.energy.2011.05.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211003641
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.05.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamed, Osman A. & Al-Washmi, Hamed A. & Al-Otaibi, Holayil A., 2006. "Thermoeconomic analysis of a power/water cogeneration plant," Energy, Elsevier, vol. 31(14), pages 2699-2709.
    2. Rensonnet, Thibaut & Uche, Javier & Serra, Luis, 2007. "Simulation and thermoeconomic analysis of different configurations of gas turbine (GT)-based dual-purpose power and desalination plants (DPPDP) and hybrid plants (HP)," Energy, Elsevier, vol. 32(6), pages 1012-1023.
    3. Blanco, J. & Malato, S. & Fernández-Ibañez, P. & Alarcón, D. & Gernjak, W. & Maldonado, M.I., 2009. "Review of feasible solar energy applications to water processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1437-1445, August.
    4. Ansari, Kambiz & Sayyaadi, Hoseyn & Amidpour, Majid, 2010. "Thermoeconomic optimization of a hybrid pressurized water reactor (PWR) power plant coupled to a multi effect distillation desalination system with thermo-vapor compressor (MED-TVC)," Energy, Elsevier, vol. 35(5), pages 1981-1996.
    5. Deng, Runya & Xie, Lixin & Lin, Hu & Liu, Jie & Han, Wei, 2010. "Integration of thermal energy and seawater desalination," Energy, Elsevier, vol. 35(11), pages 4368-4374.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pati, Smitarani & Verma, Om Prakash, 2022. "Energy integration of solar assisted Multiple Stage Evaporator and optimum parameter selection," Energy, Elsevier, vol. 239(PC).
    2. Martín, Mariano, 2015. "Optimal annual operation of the dry cooling system of a concentrated solar energy plant in the south of Spain," Energy, Elsevier, vol. 84(C), pages 774-782.
    3. González-Núñez, Sofía & Guerras, Lidia S. & Martín, Mariano, 2023. "A multiscale analysis approach for the valorization of sludge and MSW via co-incineration," Energy, Elsevier, vol. 263(PE).
    4. Kianifar, Ali & Zeinali Heris, Saeed & Mahian, Omid, 2012. "Exergy and economic analysis of a pyramid-shaped solar water purification system: Active and passive cases," Energy, Elsevier, vol. 38(1), pages 31-36.
    5. Soomro, Mujeeb Iqbal & Kim, Woo-Seung, 2018. "Performance and economic evaluation of linear Fresnel reflector plant integrated direct contact membrane distillation system," Renewable Energy, Elsevier, vol. 129(PA), pages 561-569.
    6. Sadi, Meisam & Arabkoohsar, Ahmad, 2020. "Exergy, economic and environmental analysis of a solar-assisted cold supply machine for district energy systems," Energy, Elsevier, vol. 206(C).
    7. Francisco Berenguel-Felices & Antonio Lara-Galera & María Belén Muñoz-Medina, 2020. "Requirements for the Construction of New Desalination Plants into a Framework of Sustainability," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    8. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    9. Li, Chennan & Goswami, D. Yogi & Shapiro, Andrew & Stefanakos, Elias K. & Demirkaya, Gokmen, 2012. "A new combined power and desalination system driven by low grade heat for concentrated brine," Energy, Elsevier, vol. 46(1), pages 582-595.
    10. Goel, Anubhav & Manik, Gaurav & Verma, Om Prakash, 2023. "Integration of a parabolic trough solar collector with an energy-intensive multi-effect evaporator: A move towards industrial decarbonization," Energy, Elsevier, vol. 279(C).
    11. Uche, J. & Círez, F. & Bayod, A.A. & Martínez, A., 2013. "On-grid and off-grid batch-ED (electrodialysis) process: Simulation and experimental tests," Energy, Elsevier, vol. 57(C), pages 44-54.
    12. Omar, Amr & Nashed, Amir & Li, Qiyuan & Leslie, Greg & Taylor, Robert A., 2020. "Pathways for integrated concentrated solar power - Desalination: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Okampo, Ewaoche John & Nwulu, Nnamdi, 2021. "Optimisation of renewable energy powered reverse osmosis desalination systems: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    14. Mata-Torres, Carlos & Escobar, Rodrigo A. & Cardemil, José M. & Simsek, Yeliz & Matute, José A., 2017. "Solar polygeneration for electricity production and desalination: Case studies in Venezuela and northern Chile," Renewable Energy, Elsevier, vol. 101(C), pages 387-398.
    15. Backhaus, Klaus & Gausling, Philipp & Hildebrand, Luise, 2015. "Comparing the incomparable: Lessons to be learned from models evaluating the feasibility of Desertec," Energy, Elsevier, vol. 82(C), pages 905-913.
    16. Tamburini, A. & Cipollina, A. & Micale, G. & Piacentino, A., 2016. "CHP (combined heat and power) retrofit for a large MED-TVC (multiple effect distillation along with thermal vapour compression) desalination plant: high efficiency assessment for different design opti," Energy, Elsevier, vol. 115(P3), pages 1548-1559.
    17. Reddy, V. Siva & Kaushik, S.C. & Tyagi, S.K., 2012. "Exergetic analysis and performance evaluation of parabolic trough concentrating solar thermal power plant (PTCSTPP)," Energy, Elsevier, vol. 39(1), pages 258-273.
    18. Palenzuela, Patricia & Zaragoza, Guillermo & Alarcón-Padilla, Diego-César, 2015. "Characterisation of the coupling of multi-effect distillation plants to concentrating solar power plants," Energy, Elsevier, vol. 82(C), pages 986-995.
    19. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    20. Kouta, Amine & Al-Sulaiman, Fahad A. & Atif, Maimoon, 2017. "Energy analysis of a solar driven cogeneration system using supercritical CO2 power cycle and MEE-TVC desalination system," Energy, Elsevier, vol. 119(C), pages 996-1009.
    21. Petersen, Nils Hendrik & Arras, Maximilian & Wirsum, Manfred & Ma, Linwei, 2024. "Integration of large-scale heat pumps to assist sustainable water desalination and district cooling," Energy, Elsevier, vol. 289(C).
    22. Wang, Gang & Dong, Boyi & Chen, Zeshao, 2021. "Design and behaviour estimate of a novel concentrated solar-driven power and desalination system using S–CO2 Brayton cycle and MSF technology," Renewable Energy, Elsevier, vol. 176(C), pages 555-564.
    23. Arabkoohsar, A. & Sadi, M., 2020. "A solar PTC powered absorption chiller design for Co-supply of district heating and cooling systems in Denmark," Energy, Elsevier, vol. 193(C).
    24. Cheng Zhang & Na Li & Guangqi An, 2024. "Review of Concentrated Solar Power Technology Applications in Photocatalytic Water Purification and Energy Conversion: Overview, Challenges and Future Directions," Energies, MDPI, vol. 17(2), pages 1-24, January.
    25. Guerras, Lidia S. & Martín, Mariano, 2020. "On the water footprint in power production: Sustainable design of wet cooling towers," Applied Energy, Elsevier, vol. 263(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Chending & Zhang, Na & Lior, Noam & Lin, Hu, 2011. "Proposal and analysis of a dual-purpose system integrating a chemically recuperated gas turbine cycle with thermal seawater desalination," Energy, Elsevier, vol. 36(6), pages 3791-3803.
    2. Manassaldi, Juan I. & Mussati, Miguel C. & Scenna, Nicolás J. & Morosuk, Tatiana & Mussati, Sergio F., 2021. "Process optimization and revamping of combined-cycle heat and power plants integrated with thermal desalination processes," Energy, Elsevier, vol. 233(C).
    3. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    4. Gorjian, Shiva & Ghobadian, Barat, 2015. "Solar desalination: A sustainable solution to water crisis in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 571-584.
    5. Gadhamshetty, Venkataramana & Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany, 2014. "Thermal energy storage system for energy conservation and water desalination in power plants," Energy, Elsevier, vol. 66(C), pages 938-949.
    6. Xiong, Jie & Zhao, Haibo & Zhang, Chao & Zheng, Chuguang & Luh, Peter B., 2012. "Thermoeconomic operation optimization of a coal-fired power plant," Energy, Elsevier, vol. 42(1), pages 486-496.
    7. Catrini, P. & Cellura, M. & Guarino, F. & Panno, D. & Piacentino, A., 2018. "An integrated approach based on Life Cycle Assessment and Thermoeconomics: Application to a water-cooled chiller for an air conditioning plant," Energy, Elsevier, vol. 160(C), pages 72-86.
    8. Ghorbani, Bahram & Mehrpooya, Mehdi & Ghasemzadeh, Hossein, 2018. "Investigation of a hybrid water desalination, oxy-fuel power generation and CO2 liquefaction process," Energy, Elsevier, vol. 158(C), pages 1105-1119.
    9. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    10. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    11. Liben Gao & Yujie Dong & Huiping Guo, 2022. "Selection of Planning Options of Electricity and Freshwater Cogeneration Method Based on High-Temperature Gas-Cooled Reactor," Energies, MDPI, vol. 15(12), pages 1-14, June.
    12. Sharan, Prashant & Bandyopadhyay, Santanu, 2016. "Energy optimization in parallel/cross feed multiple-effect evaporator based desalination system," Energy, Elsevier, vol. 111(C), pages 756-767.
    13. Shahandeh, H. & Ivakpour, J. & Kasiri, N., 2014. "Internal and external HIDiCs (heat-integrated distillation columns) optimization by genetic algorithm," Energy, Elsevier, vol. 64(C), pages 875-886.
    14. Sharifi, Navid & Boroomand, Masoud & Kouhikamali, Ramin, 2012. "Wet steam flow energy analysis within thermo-compressors," Energy, Elsevier, vol. 47(1), pages 609-619.
    15. M. Ehyaei & M. Kasaeian & Stéphane Abanades & Armin Razmjoo & Hamed Afshari & Marc Rosen & Biplab Das, 2023. "Natural gas‐fueled multigeneration for reducing environmental effects of brine and increasing product diversity: Thermodynamic and economic analyses," Post-Print hal-04113893, HAL.
    16. Ucar, Aynur, 2010. "Thermoeconomic analysis method for optimization of insulation thickness for the four different climatic regions of Turkey," Energy, Elsevier, vol. 35(4), pages 1854-1864.
    17. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    18. Ariana M. Pietrasanta & Sergio F. Mussati & Pio A. Aguirre & Tatiana Morosuk & Miguel C. Mussati, 2022. "Optimization of Cogeneration Power-Desalination Plants," Energies, MDPI, vol. 15(22), pages 1-22, November.
    19. Huang, Jian & Hu, Yanwei & Bai, Yijie & He, Yurong & Zhu, Jiaqi, 2020. "Solar membrane distillation enhancement through thermal concentration," Energy, Elsevier, vol. 211(C).
    20. Sayyaadi, Hoseyn & Baghsheikhi, Mostafa, 2019. "Retrofit of a steam power plant using the adaptive neuro-fuzzy inference system in response to the load variation," Energy, Elsevier, vol. 175(C), pages 1164-1173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:8:p:4950-4958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.