IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipbs0360544221023252.html
   My bibliography  Save this article

Barrier identification and analysis framework to the development of offshore wind-to-hydrogen projects

Author

Listed:
  • Wu, Yunna
  • Liu, Fangtong
  • Wu, Junhao
  • He, Jiaming
  • Xu, Minjia
  • Zhou, Jianli

Abstract

Offshore wind-to-hydrogen projects enjoy increasingly significant attention due to environmental protection advantages. Nevertheless, the development is hampered by multiple factors and therefore lagging expectations. Some studies have been devoted to this but there still are two deficiencies, namely incomplete barrier identification and biased analysis methods. Hence, this study is devoted to build a comprehensive research framework to effectively address barriers and promote high-quality development of offshore wind-to-hydrogen projects. Firstly, possible barriers are screened covering all stages of project management life cycle, and fourteen barriers are identified. Then a modified fuzzy decision-making trial and evaluation laboratory method is applied to analyze these barriers, where K-Mediods clustering algorithm is introduced to improve threshold determination. Interactions among barriers are divided into four degrees with key parameters analyzed under four scenarios, and furtherly five critical barriers are extracted. By comparative analysis, the improved method promotes objectiveness of the result and thus is reliable to be applied to relevant analysis work. In conclusion, it is suggested to place emphasis on complicated planning & design, lack of technical specifications, high initial investment, immature business model and lack of high-matching modeling technology, joint efforts by government department, multiple enterprises and scientific institutions with five corresponding management suggestions.

Suggested Citation

  • Wu, Yunna & Liu, Fangtong & Wu, Junhao & He, Jiaming & Xu, Minjia & Zhou, Jianli, 2022. "Barrier identification and analysis framework to the development of offshore wind-to-hydrogen projects," Energy, Elsevier, vol. 239(PB).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023252
    DOI: 10.1016/j.energy.2021.122077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221023252
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2018. "A lifecycle techno-economic model of offshore wind energy for different entry and exit instances," Applied Energy, Elsevier, vol. 221(C), pages 406-424.
    2. Qiu, Yue & Zhou, Suyang & Wang, Jihua & Chou, Jun & Fang, Yunhui & Pan, Guangsheng & Gu, Wei, 2020. "Feasibility analysis of utilising underground hydrogen storage facilities in integrated energy system: Case studies in China," Applied Energy, Elsevier, vol. 269(C).
    3. Sunila, Kanerva & Bergaentzlé, Claire & Martin, Bénédicte & Ekroos, Ari, 2019. "A supra-national TSO to enhance offshore wind power development in the Baltic Sea? A legal and regulatory analysis," Energy Policy, Elsevier, vol. 128(C), pages 775-782.
    4. Ehrenstein, Michael & Galán-Martín, Ángel & Tulus, Victor & Guillén-Gosálbez, Gonzalo, 2020. "Optimising fuel supply chains within planetary boundaries: A case study of hydrogen for road transport in the UK," Applied Energy, Elsevier, vol. 276(C).
    5. Rezaei, Mostafa & Naghdi-Khozani, Nafiseh & Jafari, Niloofar, 2020. "Wind energy utilization for hydrogen production in an underdeveloped country: An economic investigation," Renewable Energy, Elsevier, vol. 147(P1), pages 1044-1057.
    6. Liu, Wei & Zhang, Zhixin & Chen, Jie & Jiang, Deyi & Wu, Fei & Fan, Jinyang & Li, Yinping, 2020. "Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu province," Energy, Elsevier, vol. 198(C).
    7. Apostolou, Dimitrios, 2020. "Optimisation of a hydrogen production – storage – re-powering system participating in electricity and transportation markets. A case study for Denmark," Applied Energy, Elsevier, vol. 265(C).
    8. Hutchison, Zoë L. & Gill, Andrew B. & Sigray, Peter & He, Haibo & King, John W., 2021. "A modelling evaluation of electromagnetic fields emitted by buried subsea power cables and encountered by marine animals: Considerations for marine renewable energy development," Renewable Energy, Elsevier, vol. 177(C), pages 72-81.
    9. McDonagh, Shane & Ahmed, Shorif & Desmond, Cian & Murphy, Jerry D, 2020. "Hydrogen from offshore wind: Investor perspective on the profitability of a hybrid system including for curtailment," Applied Energy, Elsevier, vol. 265(C).
    10. Gao, Jianwei & Guo, Fengjia & Ma, Zeyang & Huang, Xin & Li, Xiangzhen, 2020. "Multi-criteria group decision-making framework for offshore wind farm site selection based on the intuitionistic linguistic aggregation operators," Energy, Elsevier, vol. 204(C).
    11. Cui, Li & Chan, Hing Kai & Zhou, Yizhuo & Dai, Jing & Lim, Jia Jia, 2019. "Exploring critical factors of green business failure based on Grey-Decision Making Trial and Evaluation Laboratory (DEMATEL)," Journal of Business Research, Elsevier, vol. 98(C), pages 450-461.
    12. Soares-Ramos, Emanuel P.P. & de Oliveira-Assis, Lais & Sarrias-Mena, Raúl & Fernández-Ramírez, Luis M., 2020. "Current status and future trends of offshore wind power in Europe," Energy, Elsevier, vol. 202(C).
    13. Taylor, James W. & Jeon, Jooyoung, 2018. "Probabilistic forecasting of wave height for offshore wind turbine maintenance," European Journal of Operational Research, Elsevier, vol. 267(3), pages 877-890.
    14. Siyu Tao & Andrés Feijóo & Jiemin Zhou & Gang Zheng, 2020. "Topology Design of an Offshore Wind Farm with Multiple Types of Wind Turbines in a Circular Layout," Energies, MDPI, vol. 13(3), pages 1-16, January.
    15. Seyed-Hosseini, S.M. & Safaei, N. & Asgharpour, M.J., 2006. "Reprioritization of failures in a system failure mode and effects analysis by decision making trial and evaluation laboratory technique," Reliability Engineering and System Safety, Elsevier, vol. 91(8), pages 872-881.
    16. Niesten, Eva & Jolink, Albert & Chappin, Maryse, 2018. "Investments in the Dutch onshore wind energy industry: A review of investor profiles and the impact of renewable energy subsidies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2519-2525.
    17. Klain, Sarah C. & Satterfield, Terre & Sinner, Jim & Ellis, Joanne I. & Chan, Kai M.A., 2018. "Bird Killer, Industrial Intruder or Clean Energy? Perceiving Risks to Ecosystem Services Due to an Offshore Wind Farm," Ecological Economics, Elsevier, vol. 143(C), pages 111-129.
    18. Shu, Zhiyong & Liang, Wenqing & Zheng, Xiaohong & Lei, Gang & Cao, Peng & Dai, Wenxiao & Qian, Hua, 2021. "Dispersion characteristics of hydrogen leakage: Comparing the prediction model with the experiment," Energy, Elsevier, vol. 236(C).
    19. Wilkie, David & Galasso, Carmine, 2020. "A probabilistic framework for offshore wind turbine loss assessment," Renewable Energy, Elsevier, vol. 147(P1), pages 1772-1783.
    20. Herring, Robbie & Dyer, Kirsten & Martin, Ffion & Ward, Carwyn, 2019. "The increasing importance of leading edge erosion and a review of existing protection solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    21. Ishaq, H. & Dincer, I., 2021. "Comparative assessment of renewable energy-based hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    22. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2020. "Stochastic financial appraisal of offshore wind farms," Renewable Energy, Elsevier, vol. 145(C), pages 1176-1191.
    23. Mora, Esteve Borràs & Spelling, James & van der Weijde, Adriaan H. & Pavageau, Ellen-Mary, 2019. "The effects of mean wind speed uncertainty on project finance debt sizing for offshore wind farms," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    24. Lee, Dong-Yeon & Elgowainy, Amgad & Vijayagopal, Ram, 2019. "Well-to-wheel environmental implications of fuel economy targets for hydrogen fuel cell electric buses in the United States," Energy Policy, Elsevier, vol. 128(C), pages 565-583.
    25. Caglayan, Dilara Gulcin & Ryberg, David Severin & Heinrichs, Heidi & Linßen, Jochen & Stolten, Detlef & Robinius, Martin, 2019. "The techno-economic potential of offshore wind energy with optimized future turbine designs in Europe," Applied Energy, Elsevier, vol. 255(C).
    26. Wu, Yunna & Xu, Chuanbo & Zhang, Buyuan & Tao, Yao & Li, Xinying & Chu, Han & Liu, Fangtong, 2019. "Sustainability performance assessment of wind power coupling hydrogen storage projects using a hybrid evaluation technique based on interval type-2 fuzzy set," Energy, Elsevier, vol. 179(C), pages 1176-1190.
    27. Leimeister, Mareike & Kolios, Athanasios, 2018. "A review of reliability-based methods for risk analysis and their application in the offshore wind industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1065-1076.
    28. Xu, Chuanbo & Wu, Yunna & Dai, Shuyu, 2020. "What are the critical barriers to the development of hydrogen refueling stations in China? A modified fuzzy DEMATEL approach," Energy Policy, Elsevier, vol. 142(C).
    29. deCastro, M. & Salvador, S. & Gómez-Gesteira, M. & Costoya, X. & Carvalho, D. & Sanz-Larruga, F.J. & Gimeno, L., 2019. "Europe, China and the United States: Three different approaches to the development of offshore wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 55-70.
    30. Yang, Wenxian & Tian, Wenye & Wei, Kexiang & Peng, Zhike & Huang, Zhonghua, 2019. "Research on a cost-effective measure dedicated to stabilizing offshore wind farm crew transfer vessels," Renewable Energy, Elsevier, vol. 133(C), pages 275-283.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ignacio Herrera Anchustegui & Violeta S. Radovich, 2022. "Wind Energy on the High Seas: Regulatory Challenges for a Science Fiction Future," Energies, MDPI, vol. 15(23), pages 1-20, December.
    2. Chen, Xiaoyuan & Pang, Zhou & Jiang, Shan & Zhang, Mingshun & Feng, Juan & Fu, Lin & Shen, Boyang, 2023. "A novel LH2/GH2/battery multi-energy vehicle supply station using 100% local wind energy: Technical, economic and environmental perspectives," Energy, Elsevier, vol. 270(C).
    3. Ramakrishnan, Shanmugam & Delpisheh, Mostafa & Convery, Caillean & Niblett, Daniel & Vinothkannan, Mohanraj & Mamlouk, Mohamed, 2024. "Offshore green hydrogen production from wind energy: Critical review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    4. Ozturk, Merve & Dincer, Ibrahim, 2022. "System development and assessment for green hydrogen generation and blending with natural gas," Energy, Elsevier, vol. 261(PB).
    5. Wiegner, J.F. & Andreasson, L.M. & Kusters, J.E.H. & Nienhuis, R.M., 2024. "Interdisciplinary perspectives on offshore energy system integration in the North Sea: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    6. Wu, Yunna & Xu, Minjia & Tao, Yao & He, Jiaming & Liao, Yijia & Wu, Man, 2022. "A critical barrier analysis framework to the development of rural distributed PV in China," Energy, Elsevier, vol. 245(C).
    7. Ebadi Torkayesh, Ali & Hendiani, Sepehr & Walther, Grit & Venghaus, Sandra, 2024. "Fueling the future: Overcoming the barriers to market development of renewable fuels in Germany using a novel analytical approach," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1012-1033.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Chuanbo & Wu, Yunna & Dai, Shuyu, 2020. "What are the critical barriers to the development of hydrogen refueling stations in China? A modified fuzzy DEMATEL approach," Energy Policy, Elsevier, vol. 142(C).
    2. Mingyu Li & Dongxiao Niu & Zhengsen Ji & Xiwen Cui & Lijie Sun, 2021. "Forecast Research on Multidimensional Influencing Factors of Global Offshore Wind Power Investment Based on Random Forest and Elastic Net," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
    3. Wu, Yunna & Liu, Fangtong & He, Jiaming & Wu, Man & Ke, Yiming, 2021. "Obstacle identification, analysis and solutions of hydrogen fuel cell vehicles for application in China under the carbon neutrality target," Energy Policy, Elsevier, vol. 159(C).
    4. Wiegner, J.F. & Andreasson, L.M. & Kusters, J.E.H. & Nienhuis, R.M., 2024. "Interdisciplinary perspectives on offshore energy system integration in the North Sea: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    5. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Zhou, Jianli & Wu, Yunna & Tao, Yao & Gao, Jianwei & Zhong, Zhiming & Xu, Chuanbo, 2021. "Geographic information big data-driven two-stage optimization model for location decision of hydrogen refueling stations: An empirical study in China," Energy, Elsevier, vol. 225(C).
    7. Pryor, Sara C. & Barthelmie, Rebecca J., 2024. "Wind shadows impact planning of large offshore wind farms," Applied Energy, Elsevier, vol. 359(C).
    8. Liu, Min & Qin, Jianjun & Lu, Da-Gang & Zhang, Wei-Heng & Zhu, Jiang-Sheng & Faber, Michael Havbro, 2022. "Towards resilience of offshore wind farms: A framework and application to asset integrity management," Applied Energy, Elsevier, vol. 322(C).
    9. Xiang, Yue & Cai, Hanhu & Liu, Junyong & Zhang, Xin, 2021. "Techno-economic design of energy systems for airport electrification: A hydrogen-solar-storage integrated microgrid solution," Applied Energy, Elsevier, vol. 283(C).
    10. Benjamin Pakenham & Anna Ermakova & Ali Mehmanparast, 2021. "A Review of Life Extension Strategies for Offshore Wind Farms Using Techno-Economic Assessments," Energies, MDPI, vol. 14(7), pages 1-23, March.
    11. Ziemba, Paweł, 2022. "Uncertain Multi-Criteria analysis of offshore wind farms projects investments – Case study of the Polish Economic Zone of the Baltic Sea," Applied Energy, Elsevier, vol. 309(C).
    12. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    13. Bødal, Espen Flo & Holm, Sigmund Eggen & Subramanian, Avinash & Durakovic, Goran & Pinel, Dimitri & Hellemo, Lars & Ortiz, Miguel Muñoz & Knudsen, Brage Rugstad & Straus, Julian, 2024. "Hydrogen for harvesting the potential of offshore wind: A North Sea case study," Applied Energy, Elsevier, vol. 357(C).
    14. Koukoura, Sofia & Scheu, Matti Niclas & Kolios, Athanasios, 2021. "Influence of extended potential-to-functional failure intervals through condition monitoring systems on offshore wind turbine availability," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    15. Bechlenberg, Alva & Luning, Egbert A. & Saltık, M. Bahadır & Szirbik, Nick B. & Jayawardhana, Bayu & Vakis, Antonis I., 2024. "Renewable energy system sizing with power generation and storage functions accounting for its optimized activity on multiple electricity markets," Applied Energy, Elsevier, vol. 360(C).
    16. Vipulesh Shardeo & Bishal Dey Sarkar, 2024. "Adoption of hydrogen‐fueled freight transportation: A strategy toward sustainability," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 223-240, February.
    17. Gan, Xiaolong & Liu, Lanchi & Wen, Tao & Webber, Ronald, 2022. "Modelling interrelationships between barriers to adopting green building technologies in China's rural housing via grey-DEMATEL," Technology in Society, Elsevier, vol. 70(C).
    18. Du, Zhengyang & Dai, Zhenxue & Yang, Zhijie & Zhan, Chuanjun & Chen, Wei & Cao, Mingxu & Thanh, Hung Vo & Soltanian, Mohamad Reza, 2024. "Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    19. Gkeka-Serpetsidaki, Pandora & Tsoutsos, Theocharis, 2022. "A methodological framework for optimal siting of offshore wind farms: A case study on the island of Crete," Energy, Elsevier, vol. 239(PD).
    20. Zhao, Tian & Liu, Zhixin & Jamasb, Tooraj, 2022. "Developing hydrogen refueling stations: An evolutionary game approach and the case of China," Energy Economics, Elsevier, vol. 115(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.