IDEAS home Printed from https://ideas.repec.org/a/eee/teinso/v70y2022ics0160791x2200183x.html
   My bibliography  Save this article

Modelling interrelationships between barriers to adopting green building technologies in China's rural housing via grey-DEMATEL

Author

Listed:
  • Gan, Xiaolong
  • Liu, Lanchi
  • Wen, Tao
  • Webber, Ronald

Abstract

Implementing the rural revitalisation strategy provides a unique opportunity for adopting green building technologies (GBTs) in China's rural housing construction, which is mostly self-built, is well suited to adopting GBTs. However, adopting GBTs in China's rural housing has remained stagnant in pilot demonstration stage over the last decades. Limited studies have been conducted on China's rural self-built housing. This study aims to bridge this knowledge gap by identifying barriers to adopting GBTs in China's rural housing construction and examining their cause-and-effect interrelationships. Initially, 20 barriers were identified in an extensive literature review. With expert feedback, the cause-and-effect relationships between these barriers were visualised via the grey decision-making trial and evaluation laboratory technique. The impact, receptivity, prominence, and position analyses were adopted to study the barrier interrelationships. A sensitivity analysis assessed the accuracy and robustness. Twelve barriers can be classified as causes and eight as effects, divided into core, driving, independent, and impact based on the position and prominence indices. The core causal factors include traditional social norms of rural housing construction, the shortage of expertise/skilled workers, popularity of the self-built model, lack of policy and regulations for GBTs in rural areas, incomplete technical standards or systems, lack of importance attached by the government and lack of financial incentives and rewards. Improvement should be prioritised for the core barriers, which are causal and influence other barriers in the effect group. The corresponding recommendations are formulated to mitigate or eliminate these causal barriers. The study findings provide structural support to the government by determining the causal and effect barriers to adopting GBTs in China's rural housing construction. The research implications can help practitioners and policymakers effectively promote adopting GBTs in self-built housing in developing countries.

Suggested Citation

  • Gan, Xiaolong & Liu, Lanchi & Wen, Tao & Webber, Ronald, 2022. "Modelling interrelationships between barriers to adopting green building technologies in China's rural housing via grey-DEMATEL," Technology in Society, Elsevier, vol. 70(C).
  • Handle: RePEc:eee:teinso:v:70:y:2022:i:c:s0160791x2200183x
    DOI: 10.1016/j.techsoc.2022.102042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160791X2200183X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techsoc.2022.102042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raj, Alok & Dwivedi, Gourav & Sharma, Ankit & Lopes de Sousa Jabbour, Ana Beatriz & Rajak, Sonu, 2020. "Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: An inter-country comparative perspective," International Journal of Production Economics, Elsevier, vol. 224(C).
    2. Evans, Meredydd & Yu, Sha & Song, Bo & Deng, Qinqin & Liu, Jing & Delgado, Alison, 2014. "Building energy efficiency in rural China," Energy Policy, Elsevier, vol. 64(C), pages 243-251.
    3. Li, Qianwen & Long, Ruyin & Chen, Hong, 2018. "Differences and influencing factors for Chinese urban resident willingness to pay for green housings: Evidence from five first-tier cities in China," Applied Energy, Elsevier, vol. 229(C), pages 299-313.
    4. He, Bao-jie & Yang, Li & Ye, Miao & Mou, Ben & Zhou, Yanan, 2014. "Overview of rural building energy efficiency in China," Energy Policy, Elsevier, vol. 69(C), pages 385-396.
    5. Wang, Ge & Li, Yang & Zuo, Jian & Hu, Wenbo & Nie, Qingwei & Lei, Heqian, 2021. "Who drives green innovations? Characteristics and policy implications for green building collaborative innovation networks in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Sheng-Li Si & Xiao-Yue You & Hu-Chen Liu & Ping Zhang, 2018. "DEMATEL Technique: A Systematic Review of the State-of-the-Art Literature on Methodologies and Applications," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-33, January.
    7. Cui, Li & Chan, Hing Kai & Zhou, Yizhuo & Dai, Jing & Lim, Jia Jia, 2019. "Exploring critical factors of green business failure based on Grey-Decision Making Trial and Evaluation Laboratory (DEMATEL)," Journal of Business Research, Elsevier, vol. 98(C), pages 450-461.
    8. Bai, Chunguang & Sarkis, Joseph, 2013. "A grey-based DEMATEL model for evaluating business process management critical success factors," International Journal of Production Economics, Elsevier, vol. 146(1), pages 281-292.
    9. Daniël M. Bossuyt, 2021. "The value of self-build: understanding the aspirations and strategies of owner-builders in the Homeruskwartier, Almere," Housing Studies, Taylor & Francis Journals, vol. 36(5), pages 696-713, May.
    10. Dong, Junyan & Jin, Hong, 2013. "The design strategy of green rural housing of Tibetan areas in Yunnan, China," Renewable Energy, Elsevier, vol. 49(C), pages 63-67.
    11. Bossuyt, Daniël & Salet, Willem & Majoor, Stan, 2018. "Commissioning as the cornerstone of self-build. Assessing the constraints and opportunities of self-build housing in the Netherlands," Land Use Policy, Elsevier, vol. 77(C), pages 524-533.
    12. Zuo, Jian & Pullen, Stephen & Rameezdeen, Raufdeen & Bennetts, Helen & Wang, Yuan & Mao, Guozhu & Zhou, Zhihua & Du, Huibin & Duan, Huabo, 2017. "Green building evaluation from a life-cycle perspective in Australia: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 358-368.
    13. Zhu, Bing & Zhang, Wenjun & Du, Jian & Zhou, Wenji & Qiu, Tong & Li, Qiang, 2011. "Adoption of renewable energy technologies (RETs): A survey on rural construction in China," Technology in Society, Elsevier, vol. 33(3), pages 223-230.
    14. Zuo, Jian & Zhao, Zhen-Yu, 2014. "Green building research–current status and future agenda: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 271-281.
    15. Olubunmi, Olanipekun Ayokunle & Xia, Paul Bo & Skitmore, Martin, 2016. "Green building incentives: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1611-1621.
    16. Ye, Ling & Cheng, Zhijun & Wang, Qingqin & Lin, Haiyan & Lin, Changqing & Liu, Bin, 2015. "Developments of Green Building Standards in China," Renewable Energy, Elsevier, vol. 73(C), pages 115-122.
    17. Liu, Guo & Li, Xiaohu & Tan, Yongtao & Zhang, Guomin, 2020. "Building green retrofit in China: Policies, barriers and recommendations," Energy Policy, Elsevier, vol. 139(C).
    18. Xu, Chuanbo & Wu, Yunna & Dai, Shuyu, 2020. "What are the critical barriers to the development of hydrogen refueling stations in China? A modified fuzzy DEMATEL approach," Energy Policy, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weck, Marina & Jackson, Eric Blake & Sihvonen, Markus & Pappel, Ingrid, 2022. "Building smart living environments for ageing societies: Decision support for cross-border e-services between Estonia and Finland," Technology in Society, Elsevier, vol. 71(C).
    2. Yingyuan Liu & Qian Wan & Wenhui Chen, 2024. "Digital Inclusive Finance as a Catalyst for Rural Revitalization: An Empirical Analysis from the County Development Perspective in Hubei Province," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 11548-11580, September.
    3. Ye Chen & Keisuke Kitagawa, 2023. "Locally Based Architectural Construction Strategies in Rural China: Textual Analysis of Architects’ Design Thinking," Sustainability, MDPI, vol. 15(13), pages 1-30, July.
    4. Mahmud, Priom & Ahmed, Mushaer & Janan, Farhatul & Xames, Md Doulotuzzaman & Chowdhury, Naimur Rahman, 2023. "Strategies to develop a sustainable and resilient vaccine supply chain in the context of a developing economy," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Cao & Cong Xu & Syahrul Nizam Kamaruzzaman & Nur Mardhiyah Aziz, 2022. "A Systematic Review of Green Building Development in China: Advantages, Challenges and Future Directions," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    2. Dwivedi, Ashish & Moktadir, Md. Abdul & Chiappetta Jabbour, Charbel José & de Carvalho, Daniel Estima, 2022. "Integrating the circular economy and industry 4.0 for sustainable development: Implications for responsible footwear production in a big data-driven world," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    3. Jia, Xiaohui & Cui, Yongmei, 2021. "Examining interrelationships of barriers in the evolution of maritime port smartification from a systematic perspective," Transport Policy, Elsevier, vol. 114(C), pages 49-58.
    4. Zezhou Wu & Qiufeng He & Kaijie Yang & Jinming Zhang & Kexi Xu, 2020. "Investigating the Dynamics of China’s Green Building Policy Development from 1986 to 2019," IJERPH, MDPI, vol. 18(1), pages 1-19, December.
    5. Aisikaer Molake & Rui Zhang & Yihuan Zhou, 2023. "Multi-Objective Optimization of Daylight Performance and Thermal Comfort of Enclosed-Courtyard Rural Residence in a Cold Climate Zone, China," Sustainability, MDPI, vol. 15(10), pages 1-22, May.
    6. Shi, Qian & Yu, Tao & Zuo, Jian, 2015. "What leads to low-carbon buildings? A China study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 726-734.
    7. Jingyuan Shi & Jiaqing Sun, 2023. "Prefabrication Implementation Potential Evaluation in Rural Housing Based on Entropy Weighted TOPSIS Model: A Case Study of Counties in Chongqing, China," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    8. Wang, Ge & Li, Yang & Zuo, Jian & Hu, Wenbo & Nie, Qingwei & Lei, Heqian, 2021. "Who drives green innovations? Characteristics and policy implications for green building collaborative innovation networks in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Shen, Yuxuan & Pan, Yue, 2023. "BIM-supported automatic energy performance analysis for green building design using explainable machine learning and multi-objective optimization," Applied Energy, Elsevier, vol. 333(C).
    10. Liu, Yang & Pedrycz, Witold & Deveci, Muhammet & Chen, Zhen-Song, 2024. "BIM-based building performance assessment of green buildings - A case study from China," Applied Energy, Elsevier, vol. 373(C).
    11. Linyan Chen & Xin Gao & Shitao Gong & Zhou Li, 2020. "Regionalization of Green Building Development in China: A Comprehensive Evaluation Model Based on the Catastrophe Progression Method," Sustainability, MDPI, vol. 12(15), pages 1-22, July.
    12. Tsai, Pei-Hsuan & Kao, Ya-Ling & Kuo, Szu-Yu, 2023. "Exploring the critical factors influencing the outlying island talent recruitment and selection evaluation model: Empirical evidence from Penghu, Taiwan," Evaluation and Program Planning, Elsevier, vol. 99(C).
    13. Kong, Minjin & Lee, Minhyun & Kang, Hyuna & Hong, Taehoon, 2021. "Development of a framework for evaluating the contents and usability of the building life cycle assessment tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Kim, Rakhyun & Tae, Sungho & Roh, Seungjun, 2017. "Development of low carbon durability design for green apartment buildings in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 263-272.
    15. Paul, Sanjoy Kumar & Chowdhury, Priyabrata & Moktadir, Md. Abdul & Lau, Kwok Hung, 2021. "Supply chain recovery challenges in the wake of COVID-19 pandemic," Journal of Business Research, Elsevier, vol. 136(C), pages 316-329.
    16. Lin Zhang & Shan Guo & Zezhou Wu & Ahmed Alsaedi & Tasawar Hayat, 2018. "SWOT Analysis for the Promotion of Energy Efficiency in Rural Buildings: A Case Study of China," Energies, MDPI, vol. 11(4), pages 1-17, April.
    17. Mukherjee, Abheek Anjan & Raj, Alok & Aggarwal, Shikha, 2023. "Identification of barriers and their mitigation strategies for industry 5.0 implementation in emerging economies," International Journal of Production Economics, Elsevier, vol. 257(C).
    18. Raj, Alok & Kumar, J. Ajith & Bansal, Prateek, 2020. "A multicriteria decision making approach to study barriers to the adoption of autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 122-137.
    19. Lai, Xiaodong & Liu, Jixian & Shi, Qian & Georgiev, Georgi & Wu, Guangdong, 2017. "Driving forces for low carbon technology innovation in the building industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 299-315.
    20. Yiwei Gong & Marijn Janssen, 2023. "Why Organizations Fail in Implementing Enterprise Architecture Initiatives?," Information Systems Frontiers, Springer, vol. 25(4), pages 1401-1419, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:70:y:2022:i:c:s0160791x2200183x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.