IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipbs0360544221022957.html
   My bibliography  Save this article

Simulated potential wind power sensitivity to the planetary boundary layer parameterizations combined with various topography datasets in the weather research and forecasting model

Author

Listed:
  • Wu, Chunlei
  • Luo, Kun
  • Wang, Qiang
  • Fan, Jianren

Abstract

Wind power simulation was validated to be sensitive to the planetary boundary layer (PBL) parameterization schemes in the Weather Researching and Forecasting (WRF) model. However, the performance of PBL schemes was rarely evaluated under different resolutions of topography. In this study, we present a sensitivity study to figure out how the resolution of the topography database will influence the performance of PBL schemes. It refers not only to the individual impact of the PBL schemes and topography datasets on wind speed prediction but also the combined interactions. Hourly simulated wind speeds are compared with the measurements at different heights, and these differences are statistically analyzed in both stable and unstable surface layers under the flat and complex terrain. The results show that the Yonsei University (YSU) scheme offers consistently good predictions, however, the Mellor-Yamada-Janjic (MYJ) scheme which has poor performance still provides acceptable outcomes under high-resolution topography. The wind speed shows low sensitivity to the PBL schemes and the relevant wind power density is nearly declined by 6% with refined resolution topography datasets over the complex terrain. Accordingly, a precise topography dataset can increase the simulated robustness of potential wind power prediction.

Suggested Citation

  • Wu, Chunlei & Luo, Kun & Wang, Qiang & Fan, Jianren, 2022. "Simulated potential wind power sensitivity to the planetary boundary layer parameterizations combined with various topography datasets in the weather research and forecasting model," Energy, Elsevier, vol. 239(PB).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221022957
    DOI: 10.1016/j.energy.2021.122047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221022957
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    2. Xsitaaz T. Chadee & Naresh R. Seegobin & Ricardo M. Clarke, 2017. "Optimizing the Weather Research and Forecasting (WRF) Model for Mapping the Near-Surface Wind Resources over the Southernmost Caribbean Islands of Trinidad and Tobago," Energies, MDPI, vol. 10(7), pages 1-23, July.
    3. Salvação, N. & Guedes Soares, C., 2018. "Wind resource assessment offshore the Atlantic Iberian coast with the WRF model," Energy, Elsevier, vol. 145(C), pages 276-287.
    4. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "Sensitivity of the WRF model wind simulation and wind energy production estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula," Applied Energy, Elsevier, vol. 135(C), pages 234-246.
    5. Waewsak, Jompob & Landry, Mathieu & Gagnon, Yves, 2015. "Offshore wind power potential of the Gulf of Thailand," Renewable Energy, Elsevier, vol. 81(C), pages 609-626.
    6. Dzebre, Denis E.K. & Adaramola, Muyiwa S., 2020. "A preliminary sensitivity study of Planetary Boundary Layer parameterisation schemes in the weather research and forecasting model to surface winds in coastal Ghana," Renewable Energy, Elsevier, vol. 146(C), pages 66-86.
    7. Wang, Qiang & Luo, Kun & Wu, Chunlei & Fan, Jianren, 2019. "Impact of substantial wind farms on the local and regional atmospheric boundary layer: Case study of Zhangbei wind power base in China," Energy, Elsevier, vol. 183(C), pages 1136-1149.
    8. Wang, Qiang & Luo, Kun & Yuan, Renyu & Zhang, Sanxia & Fan, Jianren, 2019. "Wake and performance interference between adjacent wind farms: Case study of Xinjiang in China by means of mesoscale simulations," Energy, Elsevier, vol. 166(C), pages 1168-1180.
    9. Zhang, Jie & Draxl, Caroline & Hopson, Thomas & Monache, Luca Delle & Vanvyve, Emilie & Hodge, Bri-Mathias, 2015. "Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods," Applied Energy, Elsevier, vol. 156(C), pages 528-541.
    10. Prósper, Miguel A. & Otero-Casal, Carlos & Fernández, Felipe Canoura & Miguez-Macho, Gonzalo, 2019. "Wind power forecasting for a real onshore wind farm on complex terrain using WRF high resolution simulations," Renewable Energy, Elsevier, vol. 135(C), pages 674-686.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Yuhang & Han, Xingxing & Xu, Chang & Cheng, Zhe & Wang, Jincheng & Liu, Wei & Xu, Dong, 2023. "Sensitivity of simulated wind power under diverse spatial scales and multiple terrains using the weather research and forecasting model," Energy, Elsevier, vol. 285(C).
    2. Wang, Qiang & Luo, Kun & Wu, Chunlei & Zhu, Zhaofan & Fan, Jianren, 2022. "Mesoscale simulations of a real onshore wind power base in complex terrain: Wind farm wake behavior and power production," Energy, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yuhang & Han, Xingxing & Xu, Chang & Cheng, Zhe & Wang, Jincheng & Liu, Wei & Xu, Dong, 2023. "Sensitivity of simulated wind power under diverse spatial scales and multiple terrains using the weather research and forecasting model," Energy, Elsevier, vol. 285(C).
    2. Tuy, Soklin & Lee, Han Soo & Chreng, Karodine, 2022. "Integrated assessment of offshore wind power potential using Weather Research and Forecast (WRF) downscaling with Sentinel-1 satellite imagery, optimal sites, annual energy production and equivalent C," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    3. Wang, Qiang & Luo, Kun & Wu, Chunlei & Zhu, Zhaofan & Fan, Jianren, 2022. "Mesoscale simulations of a real onshore wind power base in complex terrain: Wind farm wake behavior and power production," Energy, Elsevier, vol. 241(C).
    4. Duarte Jacondino, William & Nascimento, Ana Lucia da Silva & Calvetti, Leonardo & Fisch, Gilberto & Augustus Assis Beneti, Cesar & da Paz, Sheila Radman, 2021. "Hourly day-ahead wind power forecasting at two wind farms in northeast Brazil using WRF model," Energy, Elsevier, vol. 230(C).
    5. Wu, Chunlei & Luo, Kun & Wang, Qiang & Fan, Jianren, 2022. "A refined wind farm parameterization for the weather research and forecasting model," Applied Energy, Elsevier, vol. 306(PB).
    6. Chancham, Chana & Waewsak, Jompob & Gagnon, Yves, 2017. "Offshore wind resource assessment and wind power plant optimization in the Gulf of Thailand," Energy, Elsevier, vol. 139(C), pages 706-731.
    7. Mi, Lihua & Shen, Lian & Han, Yan & Cai, C.S. & Zhou, Pinhan & Li, Kai, 2023. "Wind field simulation using WRF model in complex terrain: A sensitivity study with orthogonal design," Energy, Elsevier, vol. 285(C).
    8. González-Alonso de Linaje, N. & Mattar, C. & Borvarán, D., 2019. "Quantifying the wind energy potential differences using different WRF initial conditions on Mediterranean coast of Chile," Energy, Elsevier, vol. 188(C).
    9. Salvação, N. & Guedes Soares, C., 2018. "Wind resource assessment offshore the Atlantic Iberian coast with the WRF model," Energy, Elsevier, vol. 145(C), pages 276-287.
    10. Lattawan Niyomtham & Charoenporn Lertsathittanakorn & Jompob Waewsak & Yves Gagnon, 2022. "Mesoscale/Microscale and CFD Modeling for Wind Resource Assessment: Application to the Andaman Coast of Southern Thailand," Energies, MDPI, vol. 15(9), pages 1-19, April.
    11. Denis E.K. Dzebre & Muyiwa S. Adaramola, 2019. "Impact of Selected Options in the Weather Research and Forecasting Model on Surface Wind Hindcasts in Coastal Ghana," Energies, MDPI, vol. 12(19), pages 1-16, September.
    12. Costoya, X. & Rocha, A. & Carvalho, D., 2020. "Using bias-correction to improve future projections of offshore wind energy resource: A case study on the Iberian Peninsula," Applied Energy, Elsevier, vol. 262(C).
    13. Wang, Qiang & Luo, Kun & Yuan, Renyu & Wang, Shuai & Fan, Jianren & Cen, Kefa, 2020. "A multiscale numerical framework coupled with control strategies for simulating a wind farm in complex terrain," Energy, Elsevier, vol. 203(C).
    14. Yongnian Zhao & Yu Xue & Shanhong Gao & Jundong Wang & Qingcai Cao & Tao Sun & Yan Liu, 2022. "Computation and Analysis of an Offshore Wind Power Forecast: Towards a Better Assessment of Offshore Wind Power Plant Aerodynamics," Energies, MDPI, vol. 15(12), pages 1-17, June.
    15. Jared A. Lee & Paula Doubrawa & Lulin Xue & Andrew J. Newman & Caroline Draxl & George Scott, 2019. "Wind Resource Assessment for Alaska’s Offshore Regions: Validation of a 14-Year High-Resolution WRF Data Set," Energies, MDPI, vol. 12(14), pages 1-22, July.
    16. Gil Ruiz, Samuel Andrés & Cañón Barriga, Julio Eduardo & Martínez, J. Alejandro, 2022. "Assessment and validation of wind power potential at convection-permitting resolution for the Caribbean region of Colombia," Energy, Elsevier, vol. 244(PB).
    17. Perini de Souza, Noele Bissoli & Sperandio Nascimento, Erick Giovani & Bandeira Santos, Alex Alisson & Moreira, Davidson Martins, 2022. "Wind mapping using the mesoscale WRF model in a tropical region of Brazil," Energy, Elsevier, vol. 240(C).
    18. Laura Castro-Santos & Maite deCastro & Xurxo Costoya & Almudena Filgueira-Vizoso & Isabel Lamas-Galdo & Americo Ribeiro & João M. Dias & Moncho Gómez-Gesteira, 2021. "Economic Feasibility of Floating Offshore Wind Farms Considering Near Future Wind Resources: Case Study of Iberian Coast and Bay of Biscay," IJERPH, MDPI, vol. 18(5), pages 1-16, March.
    19. Pedruzzi, Rizzieri & Silva, Allan Rodrigues & Soares dos Santos, Thalyta & Araujo, Allan Cavalcante & Cotta Weyll, Arthur Lúcide & Lago Kitagawa, Yasmin Kaore & Nunes da Silva Ramos, Diogo & Milani de, 2023. "Review of mapping analysis and complementarity between solar and wind energy sources," Energy, Elsevier, vol. 283(C).
    20. Annas Fauzy & Cheng-Dar Yue & Chien-Cheng Tu & Ta-Hui Lin, 2021. "Understanding the Potential of Wind Farm Exploitation in Tropical Island Countries: A Case for Indonesia," Energies, MDPI, vol. 14(9), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221022957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.