IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v135y2019icp674-686.html
   My bibliography  Save this article

Wind power forecasting for a real onshore wind farm on complex terrain using WRF high resolution simulations

Author

Listed:
  • Prósper, Miguel A.
  • Otero-Casal, Carlos
  • Fernández, Felipe Canoura
  • Miguez-Macho, Gonzalo

Abstract

Regional meteorological models are becoming a generalized tool for wind resource forecasting, due to their capacity to simulate local flow dynamics impacting wind farm production. This study focuses on the case of production forecast and validation for a real onshore wind farm using high horizontal and vertical resolution WRF (Weather Research and Forecasting) model simulations. The wind farm is located in Galicia, in the northwest of Spain, in a complex region with high wind resource. Utilizing the Fitch scheme, specific for wind farms, a period of one year is simulated with a daily operational forecasting set-up. Power and wind predictions are obtained and compared with real data at each wind turbine hub, provided by the management company. Results show that WRF yields good wind power operational predictions for this kind of wind farms, due to a good representation of the planetary boundary layer behaviour of the region and the good performance of the Fitch scheme under these conditions. The best mean annual error (MAE) obtained is 1.87 m/s for wind speed and 14.75% for wind power. By comparing experiments with and without Fitch scheme, we estimate wind resource losses in the area due to the wake disturbances. The mean annual wake or environmental footprint of the farm extends for several kilometres in the southwest-northeast direction of the prevailing winds, with resource losses of 0.5% even at 17 km from the turbines.

Suggested Citation

  • Prósper, Miguel A. & Otero-Casal, Carlos & Fernández, Felipe Canoura & Miguez-Macho, Gonzalo, 2019. "Wind power forecasting for a real onshore wind farm on complex terrain using WRF high resolution simulations," Renewable Energy, Elsevier, vol. 135(C), pages 674-686.
  • Handle: RePEc:eee:renene:v:135:y:2019:i:c:p:674-686
    DOI: 10.1016/j.renene.2018.12.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118314782
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.12.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santos, J.A. & Rochinha, C. & Liberato, M.L.R. & Reyers, M. & Pinto, J.G., 2015. "Projected changes in wind energy potentials over Iberia," Renewable Energy, Elsevier, vol. 75(C), pages 68-80.
    2. Robert Vautard & Françoise Thais & Isabelle Tobin & François-Marie Bréon & Jean-Guy Devezeaux de Lavergne & Augustin Colette & Pascal Yiou & Paolo Michele Ruti, 2014. "Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms," Nature Communications, Nature, vol. 5(1), pages 1-9, May.
    3. Zhao, Jing & Guo, Zhen-Hai & Su, Zhong-Yue & Zhao, Zhi-Yuan & Xiao, Xia & Liu, Feng, 2016. "An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed," Applied Energy, Elsevier, vol. 162(C), pages 808-826.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Jing & Guo, Zhenhai & Guo, Yanling & Lin, Wantao & Zhu, Wenjin, 2021. "A self-organizing forecast of day-ahead wind speed: Selective ensemble strategy based on numerical weather predictions," Energy, Elsevier, vol. 218(C).
    2. Li, Jinghua & Zhou, Jiasheng & Chen, Bo, 2020. "Review of wind power scenario generation methods for optimal operation of renewable energy systems," Applied Energy, Elsevier, vol. 280(C).
    3. González-Alonso de Linaje, N. & Mattar, C. & Borvarán, D., 2019. "Quantifying the wind energy potential differences using different WRF initial conditions on Mediterranean coast of Chile," Energy, Elsevier, vol. 188(C).
    4. Jin, Jingxin & Li, Yilin & Ye, Lin & Xu, Xunjian & Lu, Jiazheng, 2023. "Integration of atmospheric stability in wind resource assessment through multi-scale coupling method," Applied Energy, Elsevier, vol. 348(C).
    5. Liu, Hui & Duan, Zhu & Chen, Chao, 2020. "Wind speed big data forecasting using time-variant multi-resolution ensemble model with clustering auto-encoder," Applied Energy, Elsevier, vol. 280(C).
    6. Francesco Pasanisi & Gaia Righini & Massimo D’Isidoro & Lina Vitali & Gino Briganti & Sergio Grauso & Lorenzo Moretti & Carlo Tebano & Gabriele Zanini & Mabafokeng Mahahabisa & Mosuoe Letuma & Muso Ra, 2021. "A Cooperation Project in Lesotho: Renewable Energy Potential Maps Embedded in a WebGIS Tool," Sustainability, MDPI, vol. 13(18), pages 1-26, September.
    7. Pedruzzi, Rizzieri & Silva, Allan Rodrigues & Soares dos Santos, Thalyta & Araujo, Allan Cavalcante & Cotta Weyll, Arthur Lúcide & Lago Kitagawa, Yasmin Kaore & Nunes da Silva Ramos, Diogo & Milani de, 2023. "Review of mapping analysis and complementarity between solar and wind energy sources," Energy, Elsevier, vol. 283(C).
    8. Xiong, Xiong & Zou, Ruilin & Sheng, Tao & Zeng, Weilin & Ye, Xiaoling, 2023. "An ultra-short-term wind speed correction method based on the fluctuation characteristics of wind speed," Energy, Elsevier, vol. 283(C).
    9. Mateusz Rzeszutek & Adriana Kłosowska & Robert Oleniacz, 2023. "Accuracy Assessment of WRF Model in the Context of Air Quality Modeling in Complex Terrain," Sustainability, MDPI, vol. 15(16), pages 1-27, August.
    10. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    11. D’Isidoro, Massimo & Briganti, Gino & Vitali, Lina & Righini, Gaia & Adani, Mario & Guarnieri, Guido & Moretti, Lorenzo & Raliselo, Muso & Mahahabisa, Mabafokeng & Ciancarella, Luisella & Zanini, Gabr, 2020. "Estimation of solar and wind energy resources over Lesotho and their complementarity by means of WRF yearly simulation at high resolution," Renewable Energy, Elsevier, vol. 158(C), pages 114-129.
    12. Lu, Hongfang & Ma, Xin & Huang, Kun & Azimi, Mohammadamin, 2020. "Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    13. Qiao, Dalei & Wu, Shun & Li, Ge & You, Jiaxing & Zhang, Juan & Shen, Bilong, 2022. "Wind speed forecasting using multi-site collaborative deep learning for complex terrain application in valleys," Renewable Energy, Elsevier, vol. 189(C), pages 231-244.
    14. Duarte Jacondino, William & Nascimento, Ana Lucia da Silva & Calvetti, Leonardo & Fisch, Gilberto & Augustus Assis Beneti, Cesar & da Paz, Sheila Radman, 2021. "Hourly day-ahead wind power forecasting at two wind farms in northeast Brazil using WRF model," Energy, Elsevier, vol. 230(C).
    15. Annas Fauzy & Cheng-Dar Yue & Chien-Cheng Tu & Ta-Hui Lin, 2021. "Understanding the Potential of Wind Farm Exploitation in Tropical Island Countries: A Case for Indonesia," Energies, MDPI, vol. 14(9), pages 1-26, May.
    16. De Moliner, Giorgia & Giani, Paolo & Lonati, Giovanni & Crippa, Paola, 2024. "Sensitivity of multiscale large Eddy simulations for wind power calculations in complex terrain," Applied Energy, Elsevier, vol. 364(C).
    17. Buen Zhang & Shyuan Cheng & Fanghan Lu & Yuan Zheng & Leonardo P. Chamorro, 2020. "Impact of Topographic Steps in the Wake and Power of a Wind Turbine: Part A—Statistics," Energies, MDPI, vol. 13(23), pages 1-14, December.
    18. Ahmad, Tanveer & Zhang, Dongdong, 2022. "A data-driven deep sequence-to-sequence long-short memory method along with a gated recurrent neural network for wind power forecasting," Energy, Elsevier, vol. 239(PB).
    19. Wu, Chunlei & Luo, Kun & Wang, Qiang & Fan, Jianren, 2022. "Simulated potential wind power sensitivity to the planetary boundary layer parameterizations combined with various topography datasets in the weather research and forecasting model," Energy, Elsevier, vol. 239(PB).
    20. Carlos Otero-Casal & Platon Patlakas & Miguel A. Prósper & George Galanis & Gonzalo Miguez-Macho, 2019. "Development of a High-Resolution Wind Forecast System Based on the WRF Model and a Hybrid Kalman-Bayesian Filter," Energies, MDPI, vol. 12(16), pages 1-19, August.
    21. Du, Pei & Yang, Dongchuan & Li, Yanzhao & Wang, Jianzhou, 2024. "An innovative interpretable combined learning model for wind speed forecasting," Applied Energy, Elsevier, vol. 358(C).
    22. Li, Jiale & Song, Zihao & Wang, Xuefei & Wang, Yanru & Jia, Yaya, 2022. "A novel offshore wind farm typhoon wind speed prediction model based on PSO–Bi-LSTM improved by VMD," Energy, Elsevier, vol. 251(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
    3. Wasilewski, J. & Baczynski, D., 2017. "Short-term electric energy production forecasting at wind power plants in pareto-optimality context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 177-187.
    4. Niu, Tong & Wang, Jianzhou & Zhang, Kequan & Du, Pei, 2018. "Multi-step-ahead wind speed forecasting based on optimal feature selection and a modified bat algorithm with the cognition strategy," Renewable Energy, Elsevier, vol. 118(C), pages 213-229.
    5. Shakeri, Mohammad & Shayestegan, Mohsen & Reza, S.M. Salim & Yahya, Iskandar & Bais, Badariah & Akhtaruzzaman, Md & Sopian, Kamaruzzaman & Amin, Nowshad, 2018. "Implementation of a novel home energy management system (HEMS) architecture with solar photovoltaic system as supplementary source," Renewable Energy, Elsevier, vol. 125(C), pages 108-120.
    6. Chen, Xue-Jun & Zhao, Jing & Jia, Xiao-Zhong & Li, Zhong-Long, 2021. "Multi-step wind speed forecast based on sample clustering and an optimized hybrid system," Renewable Energy, Elsevier, vol. 165(P1), pages 595-611.
    7. Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
    8. Yang, Zhongshan & Wang, Jian, 2018. "A hybrid forecasting approach applied in wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm," Energy, Elsevier, vol. 160(C), pages 87-100.
    9. Jerez, S. & Thais, F. & Tobin, I. & Wild, M. & Colette, A. & Yiou, P. & Vautard, R., 2015. "The CLIMIX model: A tool to create and evaluate spatially-resolved scenarios of photovoltaic and wind power development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1-15.
    10. Hu, Yue & Liu, Hanjing & Wu, Senzhen & Zhao, Yuan & Wang, Zhijin & Liu, Xiufeng, 2024. "Temporal collaborative attention for wind power forecasting," Applied Energy, Elsevier, vol. 357(C).
    11. Wen, Songkang & Li, Yanting & Su, Yan, 2022. "A new hybrid model for power forecasting of a wind farm using spatial–temporal correlations," Renewable Energy, Elsevier, vol. 198(C), pages 155-168.
    12. Ping Jiang & Zeng Wang & Kequan Zhang & Wendong Yang, 2017. "An Innovative Hybrid Model Based on Data Pre-Processing and Modified Optimization Algorithm and Its Application in Wind Speed Forecasting," Energies, MDPI, vol. 10(7), pages 1-29, July.
    13. Yang, Wendong & Wang, Jianzhou & Niu, Tong & Du, Pei, 2019. "A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting," Applied Energy, Elsevier, vol. 235(C), pages 1205-1225.
    14. Wang, Qin & Wu, Hongyu & Florita, Anthony R. & Brancucci Martinez-Anido, Carlo & Hodge, Bri-Mathias, 2016. "The value of improved wind power forecasting: Grid flexibility quantification, ramp capability analysis, and impacts of electricity market operation timescales," Applied Energy, Elsevier, vol. 184(C), pages 696-713.
    15. Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
    16. Liu, Chenyu & Zhang, Xuemin & Mei, Shengwei & Zhen, Zhao & Jia, Mengshuo & Li, Zheng & Tang, Haiyan, 2022. "Numerical weather prediction enhanced wind power forecasting: Rank ensemble and probabilistic fluctuation awareness," Applied Energy, Elsevier, vol. 313(C).
    17. Zhang, Fei & Li, Peng-Cheng & Gao, Lu & Liu, Yong-Qian & Ren, Xiao-Ying, 2021. "Application of autoregressive dynamic adaptive (ARDA) model in real-time wind power forecasting," Renewable Energy, Elsevier, vol. 169(C), pages 129-143.
    18. Li, Dan & Jiang, Fuxin & Chen, Min & Qian, Tao, 2022. "Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks," Energy, Elsevier, vol. 238(PC).
    19. Tian, Chaonan & Niu, Tong & Wei, Wei, 2022. "Developing a wind power forecasting system based on deep learning with attention mechanism," Energy, Elsevier, vol. 257(C).
    20. Yuan, Renyu & Ji, Wenju & Luo, Kun & Wang, Jianwen & Zhang, Sanxia & Wang, Qiang & Fan, Jianren & Ni, MingJiang & Cen, Kefa, 2017. "Coupled wind farm parameterization with a mesoscale model for simulations of an onshore wind farm," Applied Energy, Elsevier, vol. 206(C), pages 113-125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:135:y:2019:i:c:p:674-686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.