Multi-fidelity graph neural network for flow field data fusion of turbomachinery
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.129405
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Pawar, Suraj & Sharma, Ashesh & Vijayakumar, Ganesh & Bay, Chrstopher J. & Yellapantula, Shashank & San, Omer, 2022. "Towards multi-fidelity deep learning of wind turbine wakes," Renewable Energy, Elsevier, vol. 200(C), pages 867-879.
- Li, Jinxing & Liu, Tianyuan & Wang, Yuqi & Xie, Yonghui, 2022. "Integrated graph deep learning framework for flow field reconstruction and performance prediction of turbomachinery," Energy, Elsevier, vol. 254(PC).
- Nakhchi, M.E. & Naung, S. Win & Rahmati, M., 2021. "High-resolution direct numerical simulations of flow structure and aerodynamic performance of wind turbine airfoil at wide range of Reynolds numbers," Energy, Elsevier, vol. 225(C).
- Wang, Qi & Yang, Li & Huang, Kang, 2022. "Fast prediction and sensitivity analysis of gas turbine cooling performance using supervised learning approaches," Energy, Elsevier, vol. 246(C).
- Wang, Yuqi & Du, Qiuwan & Li, Yunzhu & Zhang, Di & Xie, Yonghui, 2022. "Field reconstruction and off-design performance prediction of turbomachinery in energy systems based on deep learning techniques," Energy, Elsevier, vol. 238(PB).
- Du, Qiuwan & Yang, Like & Li, Liangliang & Liu, Tianyuan & Zhang, Di & Xie, Yonghui, 2022. "Aerodynamic design and optimization of blade end wall profile of turbomachinery based on series convolutional neural network," Energy, Elsevier, vol. 244(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Jinxing & Liu, Tianyuan & Zhu, Guangya & Li, Yunzhu & Xie, Yonghui, 2023. "Uncertainty quantification and aerodynamic robust optimization of turbomachinery based on graph learning methods," Energy, Elsevier, vol. 273(C).
- Cheng, Hongzhi & Zhou, Chuangxin & Lu, Xingen & Zhao, Shengfeng & Han, Ge & Yang, Chengwu, 2023. "Robust aerodynamic optimization and design exploration of a wide-chord transonic fan under geometric and operational uncertainties," Energy, Elsevier, vol. 278(PB).
- Li, Lele & Zhang, Weihao & Li, Ya & Zhang, Ruifeng & Liu, Zongwang & Wang, Yufan & Mu, Yumo, 2024. "A non-parametric high-resolution prediction method for turbine blade profile loss based on deep learning," Energy, Elsevier, vol. 288(C).
- Anagnostopoulos, Sokratis J. & Bauer, Jens & Clare, Mariana C.A. & Piggott, Matthew D., 2023. "Accelerated wind farm yaw and layout optimisation with multi-fidelity deep transfer learning wake models," Renewable Energy, Elsevier, vol. 218(C).
- Win Naung, Shine & Nakhchi, Mahdi Erfanian & Rahmati, Mohammad, 2021. "High-fidelity CFD simulations of two wind turbines in arrays using nonlinear frequency domain solution method," Renewable Energy, Elsevier, vol. 174(C), pages 984-1005.
- Li, Haiwang & Wang, Meng & You, Ruquan & Liu, Song, 2023. "Thermal radiation correction formula of the scaling criteria for film cooling of turbine blades," Energy, Elsevier, vol. 282(C).
- Cheng, Hongzhi & Li, Ziliang & Duan, Penghao & Lu, Xingen & Zhao, Shengfeng & Zhang, Yanfeng, 2023. "Robust optimization and uncertainty quantification of a micro axial compressor for unmanned aerial vehicles," Applied Energy, Elsevier, vol. 352(C).
- Jiang, Chiju & Zhang, Weihao & Li, Ya & Li, Lele & Wang, Yufan & Huang, Dongming, 2023. "Multi-scale Pix2Pix network for high-fidelity prediction of adiabatic cooling effectiveness in turbine cascade," Energy, Elsevier, vol. 265(C).
- Chen, Zhimin & Chen, Xuejiao & Yang, XuFei & Yu, Bo & Wang, Bohong & Zhu, Jianqin & Chen, Yujie & Cai, Weihua, 2024. "Numerical study on cooling characteristics of turbine blade based on laminated cooling configuration with clapboards," Energy, Elsevier, vol. 299(C).
- Du, Qiuwan & Li, Yunzhu & Yang, Like & Liu, Tianyuan & Zhang, Di & Xie, Yonghui, 2022. "Performance prediction and design optimization of turbine blade profile with deep learning method," Energy, Elsevier, vol. 254(PA).
- Yang, Han & Yuan, Weimin & Zhu, Weijun & Sun, Zhenye & Zhang, Yanru & Zhou, Yingjie, 2024. "Wind turbine airfoil noise prediction using dedicated airfoil database and deep learning technology," Applied Energy, Elsevier, vol. 364(C).
- Zhang, Fan & Liu, Cunliang & Ye, Lin & Ran, Yuan & Zhou, Tianliang & Yan, Haonan, 2024. "Study on the film superposition method for dense multirow film Hole layouts," Energy, Elsevier, vol. 293(C).
- Jeong, Jae Sung & Bong, Seon Woo & Lee, Sang Woo, 2022. "An efficient winglet coverage for aeroengine turbine blade flat tip and its loss map," Energy, Elsevier, vol. 260(C).
- Hao, Yichen & Xie, Xinyu & Zhao, Pu & Wang, Xiaofang & Ding, Jiaqi & Xie, Rong & Liu, Haitao, 2023. "Forecasting three-dimensional unsteady multi-phase flow fields in the coal-supercritical water fluidized bed reactor via graph neural networks," Energy, Elsevier, vol. 282(C).
- Wang, Yuqi & Liu, Tianyuan & Meng, Yue & Zhang, Di & Xie, Yonghui, 2022. "Integrated optimization for design and operation of turbomachinery in a solar-based Brayton cycle based on deep learning techniques," Energy, Elsevier, vol. 252(C).
- Nakhchi, M.E. & Naung, S. Win & Rahmati, M., 2022. "Influence of blade vibrations on aerodynamic performance of axial compressor in gas turbine: Direct numerical simulation," Energy, Elsevier, vol. 242(C).
- Li, Changming & Liu, Bin & Wang, Shujie & Yuan, Peng & Lang, Xianpeng & Tan, Junzhe & Si, Xiancai, 2024. "Tidal turbine hydrofoil design and optimization based on deep learning," Renewable Energy, Elsevier, vol. 226(C).
- Mahdi Erfanian Nakhchi & Shine Win Naung & Mohammad Rahmati, 2023. "Direct Numerical Simulations of Turbulent Flow over Low-Pressure Turbine Blades with Aeroelastic Vibrations and Inflow Wakes," Energies, MDPI, vol. 16(6), pages 1-21, March.
- Liu, Changxing & Zou, Zhengping & Xu, Pengcheng & Wang, Yifan, 2024. "Development of helium turbine loss model based on knowledge transfer with neural network and its application on aerodynamic design," Energy, Elsevier, vol. 297(C).
- Zhang, Weihao & Li, Lele & Li, Ya & Jiang, Chiju & Wang, Yufan, 2023. "A parameterized-loading driven inverse design and multi-objective coupling optimization method for turbine blade based on deep learning," Energy, Elsevier, vol. 281(C).
More about this item
Keywords
Field reconstruction; Graph neural network; Multi-fidelity data fusion; Turbomachinery;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223027998. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.