Influence of the configuration of elastic and dissipative elements on the energy harvesting efficiency of a tunnel effect energy harvester
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2022.113060
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
- Stefanski, Andrzej & Dabrowski, Artur & Kapitaniak, Tomasz, 2005. "Evaluation of the largest Lyapunov exponent in dynamical systems with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1651-1659.
- Grzegorz Litak & Jerzy Margielewicz & Damian Gąska & Piotr Wolszczak & Shengxi Zhou, 2021. "Multiple Solutions of the Tristable Energy Harvester," Energies, MDPI, vol. 14(5), pages 1-17, February.
- Margielewicz, Jerzy & Gąska, Damian & Litak, Grzegorz & Wolszczak, Piotr & Yurchenko, Daniil, 2022. "Nonlinear dynamics of a new energy harvesting system with quasi-zero stiffness," Applied Energy, Elsevier, vol. 307(C).
- Pan, Jianan & Qin, Weiyang & Deng, Wangzheng & Zhang, Pengtian & Zhou, Zhiyong, 2021. "Harvesting weak vibration energy by integrating piezoelectric inverted beam and pendulum," Energy, Elsevier, vol. 227(C).
- Margielewicz, Jerzy & Gąska, Damian & Litak, Grzegorz, 2019. "Evolution of the geometric structure of strange attractors of a quasi-zero stiffness vibration isolator," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 47-57.
- Zhou, Zhiyong & Qin, Weiyang & Zhu, Pei & Du, Wenfeng, 2021. "Harvesting more energy from variable-speed wind by a multi-stable configuration with vortex-induced vibration and galloping," Energy, Elsevier, vol. 237(C).
- Younesian, Davood & Alam, Mohammad-Reza, 2017. "Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting," Applied Energy, Elsevier, vol. 197(C), pages 292-302.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Margielewicz, Jerzy & Gąska, Damian & Haniszewski, Tomasz & Litak, Grzegorz & Wolszczak, Piotr & Borowiec, Marek & Sosna, Petr & Ševeček, Oldřich & Rubeš, Ondřej & Hadaš, Zdeněk, 2024. "Vibration energy harvesting system with cyclically time-varying potential barrier," Applied Energy, Elsevier, vol. 367(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Margielewicz, Jerzy & Gąska, Damian & Litak, Grzegorz & Wolszczak, Piotr & Yurchenko, Daniil, 2022. "Nonlinear dynamics of a new energy harvesting system with quasi-zero stiffness," Applied Energy, Elsevier, vol. 307(C).
- Liao, Weilin & Huang, Zijian & Sun, Hu & Huang, Xin & Gu, Yiqun & Chen, Wentao & Zhang, Zhonghua & Kan, Junwu, 2023. "Numerical investigation of cylinder vortex-induced vibration with downstream plate for vibration suppression and energy harvesting," Energy, Elsevier, vol. 281(C).
- Gong, Xulu & Xu, Pengfei & Liu, Di & Zhou, Biliu, 2023. "Stochastic resonance of multi-stable energy harvesting system with high-order stiffness from rotational environment," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
- Grzegorz Litak & Jerzy Margielewicz & Damian Gąska & Piotr Wolszczak & Shengxi Zhou, 2021. "Multiple Solutions of the Tristable Energy Harvester," Energies, MDPI, vol. 14(5), pages 1-17, February.
- Margielewicz, Jerzy & Gąska, Damian & Litak, Grzegorz & Haniszewski, Tomasz & Wolszczak, Piotr & Trigona, Carlo, 2023. "Influence of the potential barrier switching frequency on the effectiveness of energy harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
- Tomasz Haniszewski & Maria Cieśla, 2022. "Energy Harvesting in the Crane-Hoisting Mechanism," Energies, MDPI, vol. 15(24), pages 1-22, December.
- Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
- Margielewicz, Jerzy & Gąska, Damian & Litak, Grzegorz, 2019. "Evolution of the geometric structure of strange attractors of a quasi-zero stiffness vibration isolator," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 47-57.
- Sun, Hongjun & Yang, Zhen & Li, Jinxia & Ding, Hongbing & Lv, Pengfei, 2024. "Performance evaluation and optimal design for passive turbulence control-based hydrokinetic energy harvester using EWM-based TOPSIS," Energy, Elsevier, vol. 298(C).
- Zhiwen Chen & Zhongsheng Chen & Yongxiang Wei, 2022. "Quasi-Zero Stiffness-Based Synchronous Vibration Isolation and Energy Harvesting: A Comprehensive Review," Energies, MDPI, vol. 15(19), pages 1-23, September.
- Dongmei Huang & Shengxi Zhou & Zhichun Yang, 2019. "Resonance Mechanism of Nonlinear Vibrational Multistable Energy Harvesters under Narrow-Band Stochastic Parametric Excitations," Complexity, Hindawi, vol. 2019, pages 1-20, December.
- Zhou, Biliu & Jin, Yanfei & Xu, Huidong, 2022. "Global dynamics for a class of tristable system with negative stiffness," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
- Huguet, Thomas & Badel, Adrien & Druet, Olivier & Lallart, Mickaël, 2018. "Drastic bandwidth enhancement of bistable energy harvesters: Study of subharmonic behaviors and their stability robustness," Applied Energy, Elsevier, vol. 226(C), pages 607-617.
- Latif, Usman & Dowell, Earl H. & Uddin, E. & Younis, M.Y. & Frisch, H.M., 2024. "Comparative analysis of flag based energy harvester undergoing extraneous induced excitation," Energy, Elsevier, vol. 295(C).
- Mahmood Al-Riyami & Issam Bahadur & Hassen Ouakad, 2022. "There Is Plenty of Room inside a Bluff Body: A Hybrid Piezoelectric and Electromagnetic Wind Energy Harvester," Energies, MDPI, vol. 15(16), pages 1-21, August.
- Joanna Iwaniec & Grzegorz Litak & Marek Iwaniec & Jerzy Margielewicz & Damian Gąska & Mykhaylo Melnyk & Wojciech Zabierowski, 2021. "Response Identification in a Vibration Energy-Harvesting System with Quasi-Zero Stiffness and Two Potential Wells," Energies, MDPI, vol. 14(13), pages 1-14, June.
- Zhang, Jingyu & Li, Xuefeng & Li, Renfu & Dai, Lu & Wang, Wei & Yang, Kai, 2021. "Internal resonance of a two-degree-of-freedom tuned bistable electromagnetic actuator," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
- del Horno, L. & Segura, E. & Morales, R. & Somolinos, J.A., 2020. "Exhaustive closed loop behavior of an one degree of freedom first-generation device for harnessing energy from marine currents," Applied Energy, Elsevier, vol. 276(C).
- Gu, Shanghao & Xu, Weihan & Xi, Kunling & Luo, Anxin & Fan, Kangqi & Wang, Fei, 2024. "High-performance piezoelectric energy harvesting system with anti-interference capability for smart grid monitoring," Renewable Energy, Elsevier, vol. 221(C).
- Liu, Qi & Qin, Weiyang & Zhou, Zhiyong & Shang, Mengjie & Zhou, Honglei, 2023. "Harvesting low-speed wind energy by bistable snap-through and amplified inertial force," Energy, Elsevier, vol. 284(C).
More about this item
Keywords
Nonlinear dynamics; Coexisting solutions; Energy efficiency; Basins of attraction; Lyapunov exponent;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:167:y:2023:i:c:s0960077922012395. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.