IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p6097-d894881.html
   My bibliography  Save this article

There Is Plenty of Room inside a Bluff Body: A Hybrid Piezoelectric and Electromagnetic Wind Energy Harvester

Author

Listed:
  • Mahmood Al-Riyami

    (Department of Mechanical and Industrial Engineering, Sultan Qaboos University, Muscat P.O. Box 123, Oman)

  • Issam Bahadur

    (Department of Mechanical and Industrial Engineering, Sultan Qaboos University, Muscat P.O. Box 123, Oman)

  • Hassen Ouakad

    (Department of Mechanical and Industrial Engineering, Sultan Qaboos University, Muscat P.O. Box 123, Oman)

Abstract

In this paper, a piezoelectric and electromagnetic hybrid wind energy harvester is proposed. The general design of the harvester comprises multiple cantilever piezoelectric energy harvesters (PEHs) and electromagnetic energy harvesters (EEHs) embedded inside the bluff body that is attached to the free end of PEHs. This research work investigates utilizing the room inside the bluff body to enclose harvesters to have a more compact and efficient harvesting system. A comprehensive coupled dynamic model of the harvester (HEH) is developed using Lagrange’s formulation. The electromechanical and electromagnetic coupling coefficient equations are derived. The coupled equations of motion are solved analytically and numerically with an exact agreement. A parametric analysis is conducted to study the effect of the design parameters on the overall performance of the harvester in terms of output power and bandwidth. The proposed design evidently presents itself as a promising concept in utilizing the room inside a bluff body.

Suggested Citation

  • Mahmood Al-Riyami & Issam Bahadur & Hassen Ouakad, 2022. "There Is Plenty of Room inside a Bluff Body: A Hybrid Piezoelectric and Electromagnetic Wind Energy Harvester," Energies, MDPI, vol. 15(16), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6097-:d:894881
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/6097/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/6097/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
    2. Zhang, Baoshou & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong & Li, Boyang, 2017. "Numerical investigation on VIV energy harvesting of bluff bodies with different cross sections in tandem arrangement," Energy, Elsevier, vol. 133(C), pages 723-736.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamimi, V. & Esfehani, M.J. & Zeinoddini, M. & Seif, M.S. & Poncet, S., 2023. "Hydroelastic response and electromagnetic energy harvesting of square oscillators: Effects of free and fixed square wakes," Energy, Elsevier, vol. 263(PE).
    2. Zhao, Fuwang & Wang, Zhaokun & Bai, Honglei & Tang, Hui, 2023. "Energy harvesting based on flow-induced vibration of a wavy cylinder coupled with tuned mass damper," Energy, Elsevier, vol. 282(C).
    3. Zhang, Baoshou & Li, Boyang & Fu, Song & Ding, Wenjun & Mao, Zhaoyong, 2022. "Experimental investigation of the effect of high damping on the VIV energy converter near the free surface," Energy, Elsevier, vol. 244(PA).
    4. Ying Wu & Zhi Cheng & Ryley McConkey & Fue-Sang Lien & Eugene Yee, 2022. "Modelling of Flow-Induced Vibration of Bluff Bodies: A Comprehensive Survey and Future Prospects," Energies, MDPI, vol. 15(22), pages 1-63, November.
    5. Lian, Jijian & Ran, Danjie & Yan, Xiang & Liu, Fang & Shao, Nan & Wang, Xiaoqun & Yang, Xu, 2023. "Hydrokinetic energy harvesting from flow-induced motion of oscillators with different combined sections," Energy, Elsevier, vol. 269(C).
    6. Latif, U. & Uddin, E. & Younis, M.Y. & Aslam, J. & Ali, Z. & Sajid, M. & Abdelkefi, A., 2021. "Experimental electro-hydrodynamic investigation of flag-based energy harvesting in the wake of inverted C-shape cylinder," Energy, Elsevier, vol. 215(PB).
    7. Sun, Hongjun & Yang, Zhen & Li, Jinxia & Ding, Hongbing & Lv, Pengfei, 2024. "Performance evaluation and optimal design for passive turbulence control-based hydrokinetic energy harvester using EWM-based TOPSIS," Energy, Elsevier, vol. 298(C).
    8. Bai, Xu & Sun, Meng & Zhang, Wen & Wang, Jialu, 2024. "A novel elli-circ oscillator applied in VIVACE converter and its vibration characteristics and energy harvesting efficiency," Energy, Elsevier, vol. 296(C).
    9. Rashid Naseer & Huliang Dai & Abdessattar Abdelkefi & Lin Wang, 2019. "Comparative Study of Piezoelectric Vortex-Induced Vibration-Based Energy Harvesters with Multi-Stability Characteristics," Energies, MDPI, vol. 13(1), pages 1-24, December.
    10. Fang, Shitong & Du, Houfan & Yan, Tao & Chen, Keyu & Li, Zhiyuan & Ma, Xiaoqing & Lai, Zhihui & Zhou, Shengxi, 2024. "Theoretical and experimental investigation on the advantages of auxetic nonlinear vortex-induced vibration energy harvesting," Applied Energy, Elsevier, vol. 356(C).
    11. Latif, Usman & Dowell, Earl H. & Uddin, E. & Younis, M.Y. & Frisch, H.M., 2024. "Comparative analysis of flag based energy harvester undergoing extraneous induced excitation," Energy, Elsevier, vol. 295(C).
    12. Bjarnhedinn Gudlaugsson & Bethany Marguerite Bronkema & Ivana Stepanovic & David Christian Finger, 2024. "A Systematic Review of Techno-Economic, Environmental and Socioeconomic Assessments for Vibration Induced Energy Harvesting," Energies, MDPI, vol. 17(22), pages 1-42, November.
    13. Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Wang, L., 2019. "Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections," Energy, Elsevier, vol. 167(C), pages 970-981.
    14. Zhang, Jingyu & Li, Xuefeng & Li, Renfu & Dai, Lu & Wang, Wei & Yang, Kai, 2021. "Internal resonance of a two-degree-of-freedom tuned bistable electromagnetic actuator," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    15. Gu, Shanghao & Xu, Weihan & Xi, Kunling & Luo, Anxin & Fan, Kangqi & Wang, Fei, 2024. "High-performance piezoelectric energy harvesting system with anti-interference capability for smart grid monitoring," Renewable Energy, Elsevier, vol. 221(C).
    16. Li, Ningyu & Park, Hongrae & Sun, Hai & Bernitsas, Michael M., 2022. "Hydrokinetic energy conversion using flow induced oscillations of single-cylinder with large passive turbulence control," Applied Energy, Elsevier, vol. 308(C).
    17. Sun, Weipeng & Zhao, Daoli & Tan, Ting & Yan, Zhimiao & Guo, Pengcheng & Luo, Xingqi, 2019. "Low velocity water flow energy harvesting using vortex induced vibration and galloping," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Li, Yi & Zhou, Shengxi & Yang, Zhichun & Guo, Tong & Mei, Xutao, 2019. "High-performance low-frequency bistable vibration energy harvesting plate with tip mass blocks," Energy, Elsevier, vol. 180(C), pages 737-750.
    19. Wang, Zhemin & Du, Yu & Li, Tianrun & Yan, Zhimiao & Tan, Ting, 2021. "A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design," Applied Energy, Elsevier, vol. 303(C).
    20. Zhang, Baoshou & Mao, Zhaoyong & Song, Baowei & Ding, Wenjun & Tian, Wenlong, 2018. "Numerical investigation on effect of damping-ratio and mass-ratio on energy harnessing of a square cylinder in FIM," Energy, Elsevier, vol. 144(C), pages 218-231.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6097-:d:894881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.