IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v235y2024ics0960148124013636.html
   My bibliography  Save this article

Integrated study of prediction and optimization performance of PBI-HTPEM fuel cell using deep learning, machine learning and statistical correlation

Author

Listed:
  • Alibeigi, Mahdi
  • Jazmi, Ramin
  • Maddahian, Reza
  • Khaleghi, Hassan

Abstract

This paper uses 3D modeling and artificial intelligence methods to predict, and find optimal point in high-temperature proton exchange membrane (HTPEM) fuel cells. The main objective is to obtain maximum power and current density at the optimum node of the HTPEM fuel cell. The response surface method (RSM) is used to prevent excessive duplication and ensure adequate data coverage for determining input parameters. Also, for the first time, the correlation presented was compared with AI-based metaheuristic optimization methods i.e., including support vector regression (SVR), Gaussian process regression (GPR), and deep neural networks (DNN) with a dropout layer, alongside metaheuristic algorithms such as whale optimization algorithm (WOA), Grasshopper optimization algorithm (GOA), firefly algorithm (FF), and the genetic algorithm (GA). The results show that SVR, GPR, and DNN methods have excellent performance, with mean absolute percentage error (MAPE) of 0.81 % for DNN, 0.83 % for SVR, and 2.24 % for GPR. Most optimization algorithms exhibit errors below 8 %. The DNN-GOA, SVR-WOA, SVR-GA, and GPR-GOA algorithms have the lowest errors among them. Correlations have a lower computational cost for obtaining maximum power and current density at the optimum node compared to optimization algorithms, with a relative error of less than 6 % in most cases.

Suggested Citation

  • Alibeigi, Mahdi & Jazmi, Ramin & Maddahian, Reza & Khaleghi, Hassan, 2024. "Integrated study of prediction and optimization performance of PBI-HTPEM fuel cell using deep learning, machine learning and statistical correlation," Renewable Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124013636
    DOI: 10.1016/j.renene.2024.121295
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124013636
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121295?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yi & Yuan, Fang & Weng, Rengang & Xi, Fang & Liu, Wei, 2021. "Variational-principle-optimized porosity distribution in gas diffusion layer of high-temperature PEM fuel cells," Energy, Elsevier, vol. 235(C).
    2. Deng, Shutong & Zhang, Jun & Zhang, Caizhi & Luo, Mengzhu & Ni, Meng & Li, Yu & Zeng, Tao, 2022. "Prediction and optimization of gas distribution quality for high-temperature PEMFC based on data-driven surrogate model," Applied Energy, Elsevier, vol. 327(C).
    3. Tian, Pengjie & Liu, Xuejun & Luo, Kaiyao & Li, Hongkun & Wang, Yun, 2021. "Deep learning from three-dimensional multiphysics simulation in operational optimization and control of polymer electrolyte membrane fuel cell for maximum power," Applied Energy, Elsevier, vol. 288(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faraji, Hossien & Nosratabadi, Seyyed Mostafa & Hemmati, Reza, 2022. "AC unbalanced and DC load management in multi-bus residential microgrid integrated with hybrid capacity resources," Energy, Elsevier, vol. 252(C).
    2. Wang, Hui & Wang, Zelin & Qu, Zhiguo & Zhang, Jianfei, 2023. "Deep-learning accelerating topology optimization of three-dimensional coolant channels for flow and heat transfer in a proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 352(C).
    3. Tian, Cong & Yuan, Fang & Deng, Tianlun & He, Qianhui & Hu, Cen & Chen, Yong & Liu, Wei, 2024. "Coupled optimization of auxiliary channels and porosity gradient of GDL for PEMFC," Energy, Elsevier, vol. 301(C).
    4. Windarto, Cahyani & Lim, Ocktaeck, 2024. "The operating parameter optimization of spark duration effect on the performance and emission characteristics of direct-injection propane by genetic algorithm," Energy, Elsevier, vol. 311(C).
    5. Fan, Ruijia & Chang, Guofeng & Xu, Yiming & Zhang, Yuanzhi & Wei, Pengnan, 2024. "Enhancing PEM fuel cell dynamic performance: Co-optimization of cathode catalyst layer composition and operating conditions using a novel surrogate model," Renewable Energy, Elsevier, vol. 231(C).
    6. Yu, Yulong & Lv, Shuangyu & Wang, Qiuyu & Xian, Lei & Chen, Lei & Tao, Wen-Quan, 2024. "A two-stage framework for quantifying the impact of operating parameters and optimizing power density and oxygen distribution quality of PEMFC," Renewable Energy, Elsevier, vol. 236(C).
    7. Chen, Zhijie & Zuo, Wei & Zhou, Kun & Li, Qingqing & Huang, Yuhan & E, Jiaqiang, 2023. "Multi-factor impact mechanism on the performance of high temperature proton exchange membrane fuel cell," Energy, Elsevier, vol. 278(PB).
    8. Siwen Gu & Jiaan Wang & Xinmin You & Yu Zhuang, 2023. "Investigating the Parameter-Driven Cathode Gas Diffusion of PEMFCs with a Piecewise Linearization Model," Energies, MDPI, vol. 16(9), pages 1-12, April.
    9. Salari, Ali & Shakibi, Hamid & Soleimanzade, Mohammad Amin & Sadrzadeh, Mohtada & Hakkaki-Fard, Ali, 2024. "Application of machine learning in evaluating and optimizing the hydrogen production performance of a solar-based electrolyzer system," Renewable Energy, Elsevier, vol. 220(C).
    10. Javaid, Usman & Mehmood, Adeel & Iqbal, Jamshed & Uppal, Ali Arshad, 2023. "Neural network and URED observer based fast terminal integral sliding mode control for energy efficient polymer electrolyte membrane fuel cell used in vehicular technologies," Energy, Elsevier, vol. 269(C).
    11. Ouyang, Tiancheng & Lu, Jie & Xu, Peihang & Hu, Xiaoyi & Chen, Jingxian, 2022. "High-efficiency fuel utilization innovation in microfluidic fuel cells: From liquid-feed to vapor-feed," Energy, Elsevier, vol. 240(C).
    12. Pang, Yiheng & Hao, Liang & Wang, Yun, 2022. "Convolutional neural network analysis of radiography images for rapid water quantification in PEM fuel cell," Applied Energy, Elsevier, vol. 321(C).
    13. James Chilver-Stainer & Anas F. A. Elbarghthi & Chuang Wen & Mi Tian, 2023. "Power Output Optimisation via Arranging Gas Flow Channels for Low-Temperature Polymer Electrolyte Membrane Fuel Cell (PEMFC) for Hydrogen-Powered Vehicles," Energies, MDPI, vol. 16(9), pages 1-18, April.
    14. Jinrong Yang & Yichun Wu & Xingyang Liu, 2023. "Proton Exchange Membrane Fuel Cell Power Prediction Based on Ridge Regression and Convolutional Neural Network Data-Driven Model," Sustainability, MDPI, vol. 15(14), pages 1-31, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124013636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.