IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v222y2021ics0360544221001699.html
   My bibliography  Save this article

Improved energy performance of a PEM fuel cell by introducing discontinuous S-shaped and crescent ribs into flowing channels

Author

Listed:
  • Dong, Pengcheng
  • Xie, Gongnan
  • Ni, Meng

Abstract

Better mass transfer, more uniform temperature distribution, small pressure drop, and improved electrochemical performance can be achieved by designing better flow field in PEM fuel cells. In this paper, based on the concept of a sinusoidal rib, two kinds of discontinuous ribs: S-shaped rib and crescent rib, are proposed and introduced into the flow channels of a PEM fuel cell. Results show that the proposed ribs improve the flow field, and the local convection effect becomes stronger due to the velocity field changes. Moreover, a better distribution of O2 concentration is obtained from the better flow pattern, resulting in an improvement of the electrochemical rate and an increase of the temperature. The pressure drop is effectively reduced, and the electrochemical efficiency is improved by up to 23.61% in the condition of high current density, compared to those of the baseline sinusoidal ribbed flow field.

Suggested Citation

  • Dong, Pengcheng & Xie, Gongnan & Ni, Meng, 2021. "Improved energy performance of a PEM fuel cell by introducing discontinuous S-shaped and crescent ribs into flowing channels," Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:energy:v:222:y:2021:i:c:s0360544221001699
    DOI: 10.1016/j.energy.2021.119920
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221001699
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.119920?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Pengcheng & Xie, Gongnan & Ni, Meng, 2020. "The mass transfer characteristics and energy improvement with various partially blocked flow channels in a PEM fuel cell," Energy, Elsevier, vol. 206(C).
    2. Atyabi, Seyed Ali & Afshari, Ebrahim & Wongwises, Somchai & Yan, Wen-Mon & Hadjadj, Abdellah & Shadloo, Mostafa Safdari, 2019. "Effects of assembly pressure on PEM fuel cell performance by taking into accounts electrical and thermal contact resistances," Energy, Elsevier, vol. 179(C), pages 490-501.
    3. Huo, Sen & Jiao, Kui & Park, Jae Wan, 2019. "On the water transport behavior and phase transition mechanisms in cold start operation of PEM fuel cell," Applied Energy, Elsevier, vol. 233, pages 776-788.
    4. Wilberforce, Tabbi & El Hassan, Zaki & Ogungbemi, Emmanuel & Ijaodola, O. & Khatib, F.N. & Durrant, A. & Thompson, J. & Baroutaji, A. & Olabi, A.G., 2019. "A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 236-260.
    5. Qiu, Diankai & Peng, Linfa & Tang, Jiayu & Lai, Xinmin, 2020. "Numerical analysis of air-cooled proton exchange membrane fuel cells with various cathode flow channels," Energy, Elsevier, vol. 198(C).
    6. Xuyang Zhang & Andrew Higier & Xu Zhang & Hongtan Liu, 2019. "Experimental Studies of Effect of Land Width in PEM Fuel Cells with Serpentine Flow Field and Carbon Cloth," Energies, MDPI, vol. 12(3), pages 1-10, February.
    7. Xing, Lei & Cai, Qiong & Xu, Chenxi & Liu, Chunbo & Scott, Keith & Yan, Yongsheng, 2016. "Numerical study of the effect of relative humidity and stoichiometric flow ratio on PEM (proton exchange membrane) fuel cell performance with various channel lengths: An anode partial flooding modelli," Energy, Elsevier, vol. 106(C), pages 631-645.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rostami, Leila & Haghshenasfard, Masoud & Sadeghi, Morteza & Zhiani, Mohammad, 2022. "A 3D CFD model of novel flow channel designs based on the serpentine and the parallel design for performance enhancement of PEMFC," Energy, Elsevier, vol. 258(C).
    2. Asadi, Mohammad Reza & Ghasabehi, Mehrdad & Ghanbari, Sina & Shams, Mehrzad, 2024. "The optimization of an innovative interdigitated flow field proton exchange membrane fuel cell by using artificial intelligence," Energy, Elsevier, vol. 290(C).
    3. Ouyang, Tiancheng & Lu, Jie & Zhao, Zhongkai & Chen, Jingxian & Xu, Peihang, 2021. "New insight on the mechanism of vibration effects in vapor-feed microfluidic fuel cell," Energy, Elsevier, vol. 225(C).
    4. Ouyang, Tiancheng & Lu, Jie & Xu, Peihang & Hu, Xiaoyi & Chen, Jingxian, 2022. "High-efficiency fuel utilization innovation in microfluidic fuel cells: From liquid-feed to vapor-feed," Energy, Elsevier, vol. 240(C).
    5. Atyabi, Seyed Ali & Afshari, Ebrahim & Zohravi, Elnaz & Udemu, Chinonyelum M., 2021. "Three-dimensional simulation of different flow fields of proton exchange membrane fuel cell using a multi-phase coupled model with cooling channel," Energy, Elsevier, vol. 234(C).
    6. Gilani, Hooman Azad & Hoseinzadeh, Siamak & Karimi, Hirou & Karimi, Ako & Hassanzadeh, Amir & Garcia, Davide Astiaso, 2021. "Performance analysis of integrated solar heat pump VRF system for the low energy building in Mediterranean island," Renewable Energy, Elsevier, vol. 174(C), pages 1006-1019.
    7. Zhou, Yu & Chen, Ben & Chen, Wenshang & Deng, Qihao & Shen, Jun & Tu, Zhengkai, 2022. "A novel opposite sinusoidal wave flow channel for performance enhancement of proton exchange membrane fuel cell," Energy, Elsevier, vol. 261(PB).
    8. Zhang, Shuanyang & Liu, Shun & Xu, Hongtao & Liu, Gaojie & Wang, Ke, 2022. "Performance of proton exchange membrane fuel cells with honeycomb-like flow channel design," Energy, Elsevier, vol. 239(PB).
    9. Calili-Cankir, Fatma & Ismail, Mohammed S. & Ingham, Derek B. & Hughes, Kevin J. & Ma, Lin & Pourkashanian, Mohamed, 2022. "Air-breathing versus conventional polymer electrolyte fuel cells: A parametric numerical study," Energy, Elsevier, vol. 250(C).
    10. Li, Yi & Yuan, Fang & Weng, Rengang & Xi, Fang & Liu, Wei, 2021. "Variational-principle-optimized porosity distribution in gas diffusion layer of high-temperature PEM fuel cells," Energy, Elsevier, vol. 235(C).
    11. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    12. Yin, Cong & Song, Yating & Liu, Meiru & Gao, Yan & Li, Kai & Qiao, Zemin & Tang, Hao, 2022. "Investigation of proton exchange membrane fuel cell stack with inversely phased wavy flow field design," Applied Energy, Elsevier, vol. 305(C).
    13. Gong, Fan & Yang, Xiaolong & Zhang, Xun & Mao, Zongqiang & Gao, Weitao & Wang, Cheng, 2023. "The study of Tesla valve flow field on the net power of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 329(C).
    14. Rahmani, Ebrahim & Moradi, Tofigh & Ghandehariun, Samane & Naterer, Greg F. & Ranjbar, Amirhossein, 2023. "Enhanced mass transfer and water discharge in a proton exchange membrane fuel cell with a raccoon channel flow field," Energy, Elsevier, vol. 264(C).
    15. Huang, Haozhong & Liu, Mingxin & Li, Xuan & Guo, Xiaoyu & Wang, Tongying & Li, Songwei & Lei, Han, 2022. "Numerical simulation and visualization study of a new tapered-slope serpentine flow field in proton exchange membrane fuel cell," Energy, Elsevier, vol. 246(C).
    16. Huang, Ying & Song, Jiangnan & Deng, Xinyue & Chen, Su & Zhang, Xiang & Ma, Zongpeng & Chen, Lunjun & Wu, Yanli, 2023. "Numerical investigation of baffle shape effects on performance and mass transfer of proton exchange membrane fuel cell," Energy, Elsevier, vol. 266(C).
    17. Sarjuni, C.A. & Lim, B.H. & Majlan, E.H. & Rosli, M.I., 2024. "A review: Fluid dynamic and mass transport behaviour in a proton exchange membrane fuel cell stack," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    2. Rahmani, Ebrahim & Moradi, Tofigh & Ghandehariun, Samane & Naterer, Greg F. & Ranjbar, Amirhossein, 2023. "Enhanced mass transfer and water discharge in a proton exchange membrane fuel cell with a raccoon channel flow field," Energy, Elsevier, vol. 264(C).
    3. Atyabi, Seyed Ali & Afshari, Ebrahim & Zohravi, Elnaz & Udemu, Chinonyelum M., 2021. "Three-dimensional simulation of different flow fields of proton exchange membrane fuel cell using a multi-phase coupled model with cooling channel," Energy, Elsevier, vol. 234(C).
    4. Ahmad Baroutaji & Arun Arjunan & John Robinson & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2021. "PEMFC Poly-Generation Systems: Developments, Merits, and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    5. Chen, Jingxian & Xu, Peihang & Lu, Jie & Ouyang, Tiancheng & Mo, Chunlan, 2021. "A prospective study of anti-vibration mechanism of microfluidic fuel cell via novel two-phase flow model," Energy, Elsevier, vol. 218(C).
    6. Chen, Qin & Zhang, Guobin & Zhang, Xuzhong & Sun, Cheng & Jiao, Kui & Wang, Yun, 2021. "Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability," Applied Energy, Elsevier, vol. 286(C).
    7. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    8. Zhang, Shuanyang & Liu, Shun & Xu, Hongtao & Liu, Gaojie & Wang, Ke, 2022. "Performance of proton exchange membrane fuel cells with honeycomb-like flow channel design," Energy, Elsevier, vol. 239(PB).
    9. Li, Hong-Wei & Liu, Jun-Nan & Yang, Yue & Fan, Wenxuan & Lu, Guo-Long, 2022. "Research on mass transport characteristics and net power performance under different flow channel streamlined imitated water-drop block arrangements for proton exchange membrane fuel cell," Energy, Elsevier, vol. 251(C).
    10. Mei, Bing & Barnoon, Pouya & Toghraie, Davood & Su, Chia-Hung & Nguyen, Hoang Chinh & Khan, Afrasyab, 2022. "Energy, exergy, environmental and economic analyzes (4E) and multi-objective optimization of a PEM fuel cell equipped with coolant channels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    11. Xing, Shuang & Zhao, Chen & Zou, Jiexin & Zaman, Shahid & Yu, Yang & Gong, Hongwei & Wang, Yajun & Chen, Ming & Wang, Min & Lin, Meng & Wang, Haijiang, 2022. "Recent advances in heat and water management of forced-convection open-cathode proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    12. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2016. "PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters," Energy, Elsevier, vol. 116(P1), pages 1131-1144.
    13. Lin, Rui & Zhong, Di & Lan, Shunbo & Guo, Rong & Ma, Yunyang & Cai, Xin, 2021. "Experimental validation for enhancement of PEMFC cold start performance: Based on the optimization of micro porous layer," Applied Energy, Elsevier, vol. 300(C).
    14. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    15. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Wu, Ziyao & Chen, Dongfang & Huang, Hao, 2019. "Characteristic analysis in lowering current density based on pressure drop for avoiding flooding in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 248(C), pages 321-329.
    16. Wu, Kangcheng & Du, Qing & Zu, Bingfeng & Wang, Yupeng & Cai, Jun & Gu, Xin & Xuan, Jin & Jiao, Kui, 2021. "Enabling real-time optimization of dynamic processes of proton exchange membrane fuel cell: Data-driven approach with semi-recurrent sliding window method," Applied Energy, Elsevier, vol. 303(C).
    17. Yonghua Cai & Jingming Sun & Fan Wei & Ben Chen, 2022. "Effect of Baffle Dimensionless Size Factor on the Performance of Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 15(10), pages 1-19, May.
    18. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    19. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    20. Zhang, Zhonghao & Guo, Mengdi & Yu, Zhonghao & Yao, Siyue & Wang, Jin & Qiu, Diankai & Peng, Linfa, 2022. "A novel cooperative design with optimized flow field on bipolar plates and hybrid wettability gas diffusion layer for proton exchange membrane unitized regenerative fuel cell," Energy, Elsevier, vol. 239(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:222:y:2021:i:c:s0360544221001699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.