IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v273y2023ics0360544223006643.html
   My bibliography  Save this article

Double recovery strategy of carbon for coal-to-power based on a multi-energy system with tradable green certificates

Author

Listed:
  • Ma, Ning
  • Fan, Lurong

Abstract

Coal production and consumption cause methane and carbon dioxide emissions. The high emission cost and the limited renewable energy in some areas restrict the low-carbon energy system development. This paper proposes a double recovery system based on a multi-energy system to promote energy efficiency and emission reduction, considering the life cycle carbon emissions of coal and carbon trading. A nonlinear multi-objective two-stage stochastic programming model and an approximate solution algorithm based on NSGA-II are built to find the economic-ecological balanced strategy for the system investment and operation under uncertainty. Finally, a case study about the collieries in Xianyang City is adopted to test the effectiveness of the proposed model and algorithm. The results show the multi-energy system with a double recovery system can obtain 5%–40% more profits compared with the single energy system when the GHG emission rate requirement is lower than 0.95kgCO2e/kwh. And this paper finds that carbon capture and storage has more universal utility in obtaining tradable green certificates, and the efficiency of P2G technology depends on the abundance of renewable energy. The tradable green certificates are effective incentives for coal mine methane utilization.

Suggested Citation

  • Ma, Ning & Fan, Lurong, 2023. "Double recovery strategy of carbon for coal-to-power based on a multi-energy system with tradable green certificates," Energy, Elsevier, vol. 273(C).
  • Handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223006643
    DOI: 10.1016/j.energy.2023.127270
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223006643
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127270?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Wenjun & Guo, Jia & Vartosh, Aris, 2022. "Optimal economic-emission planning of multi-energy systems integrated electric vehicles with modified group search optimization," Applied Energy, Elsevier, vol. 311(C).
    2. Varasteh, Farid & Nazar, Mehrdad Setayesh & Heidari, Alireza & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Distributed energy resource and network expansion planning of a CCHP based active microgrid considering demand response programs," Energy, Elsevier, vol. 172(C), pages 79-105.
    3. Yu, Shiwei & Zheng, Shuhong & Gao, Shiwei & Yang, Juan, 2017. "A multi-objective decision model for investment in energy savings and emission reductions in coal mining," European Journal of Operational Research, Elsevier, vol. 260(1), pages 335-347.
    4. Jaroslaw Krzywanski & Waqar Muhammad Ashraf & Tomasz Czakiert & Marcin Sosnowski & Karolina Grabowska & Anna Zylka & Anna Kulakowska & Dorian Skrobek & Sandra Mistal & Yunfei Gao, 2022. "CO 2 Capture by Virgin Ivy Plants Growing Up on the External Covers of Houses as a Rapid Complementary Route to Achieve Global GHG Reduction Targets," Energies, MDPI, vol. 15(5), pages 1-8, February.
    5. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Wang, Jueying & Hu, Zhijian & Xie, Shiwei, 2019. "Expansion planning model of multi-energy system with the integration of active distribution network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Liu, Zhiqiang & Cui, Yanping & Wang, Jiaqiang & Yue, Chang & Agbodjan, Yawovi Souley & Yang, Yu, 2022. "Multi-objective optimization of multi-energy complementary integrated energy systems considering load prediction and renewable energy production uncertainties," Energy, Elsevier, vol. 254(PC).
    8. Chen, Tengpeng & Cao, Yuhao & Qing, Xinlin & Zhang, Jingrui & Sun, Yuhao & Amaratunga, Gehan A.J., 2022. "Multi-energy microgrid robust energy management with a novel decision-making strategy," Energy, Elsevier, vol. 239(PA).
    9. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    10. Chen, Cong & Sun, Hongbin & Shen, Xinwei & Guo, Ye & Guo, Qinglai & Xia, Tian, 2019. "Two-stage robust planning-operation co-optimization of energy hub considering precise energy storage economic model," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    11. Rakipour, Davood & Barati, Hassan, 2019. "Probabilistic optimization in operation of energy hub with participation of renewable energy resources and demand response," Energy, Elsevier, vol. 173(C), pages 384-399.
    12. Fang, Guochang & Lu, Longxi & Tian, Lixin & he, Yu & Yin, Huibo, 2020. "Research on the influence mechanism of carbon trading on new energy—A case study of ESER system for China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    13. Ma, Tengfei & Wu, Junyong & Hao, Liangliang & Lee, Wei-Jen & Yan, Huaguang & Li, Dezhi, 2018. "The optimal structure planning and energy management strategies of smart multi energy systems," Energy, Elsevier, vol. 160(C), pages 122-141.
    14. Mostafavi Sani, Mostafa & Noorpoor, Alireza & Shafie-Pour Motlagh, Majid, 2019. "Optimal model development of energy hub to supply water, heating and electrical demands of a cement factory," Energy, Elsevier, vol. 177(C), pages 574-592.
    15. Liu, Jinhui & Xu, Zhanbo & Wu, Jiang & Liu, Kun & Guan, Xiaohong, 2021. "Optimal planning of distributed hydrogen-based multi-energy systems," Applied Energy, Elsevier, vol. 281(C).
    16. Fleischhacker, Andreas & Lettner, Georg & Schwabeneder, Daniel & Auer, Hans, 2019. "Portfolio optimization of energy communities to meet reductions in costs and emissions," Energy, Elsevier, vol. 173(C), pages 1092-1105.
    17. Murray, Portia & Carmeliet, Jan & Orehounig, Kristina, 2020. "Multi-Objective Optimisation of Power-to-Mobility in Decentralised Multi-Energy Systems," Energy, Elsevier, vol. 205(C).
    18. Shams, Mohammad H. & Shahabi, Majid & Kia, Mohsen & Heidari, Alireza & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Optimal operation of electrical and thermal resources in microgrids with energy hubs considering uncertainties," Energy, Elsevier, vol. 187(C).
    19. Marialaura Di Somma & Martina Caliano & Viviana Cigolotti & Giorgio Graditi, 2021. "Investigating Hydrogen-Based Non-Conventional Storage for PV Power in Eco-Energetic Optimization of a Multi-Energy System," Energies, MDPI, vol. 14(23), pages 1-17, December.
    20. Qu, Kaiping & Yu, Tao & Huang, Linni & Yang, Bo & Zhang, Xiaoshun, 2018. "Decentralized optimal multi-energy flow of large-scale integrated energy systems in a carbon trading market," Energy, Elsevier, vol. 149(C), pages 779-791.
    21. Song, Xiaoling & Wang, Yudong & Zhang, Zhe & Shen, Charles & Peña-Mora, Feniosky, 2021. "Economic-environmental equilibrium-based bi-level dispatch strategy towards integrated electricity and natural gas systems," Applied Energy, Elsevier, vol. 281(C).
    22. Yin, J.N. & Huang, G.H. & Xie, Y.L. & An, Y.K., 2021. "Carbon-subsidized inter-regional electric power system planning under cost-risk tradeoff and uncertainty: A case study of Inner Mongolia, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    23. Simeoni, Patrizia & Nardin, Gioacchino & Ciotti, Gellio, 2018. "Planning and design of sustainable smart multi energy systems. The case of a food industrial district in Italy," Energy, Elsevier, vol. 163(C), pages 443-456.
    24. Bostan, Alireza & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Catalão, João P.S., 2020. "Optimal scheduling of distribution systems considering multiple downward energy hubs and demand response programs," Energy, Elsevier, vol. 190(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Dewen & Luo, Zhao & Qin, Jinghui & Wang, Hua & Wang, Gang & Li, Zhao & Zhao, Weijie & Shen, Xin, 2023. "Low-carbon dispatch of multi-district integrated energy systems considering carbon emission trading and green certificate trading," Renewable Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heendeniya, Charitha Buddhika & Sumper, Andreas & Eicker, Ursula, 2020. "The multi-energy system co-planning of nearly zero-energy districts – Status-quo and future research potential," Applied Energy, Elsevier, vol. 267(C).
    2. Chen, Honglin & Liu, Mingbo & Liu, Yingqi & Lin, Shunjiang & Yang, Zhibin, 2020. "Partial surrogate cuts method for network-constrained optimal scheduling of multi-carrier energy systems with demand response," Energy, Elsevier, vol. 196(C).
    3. Xie, Shiwei & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "The optimal planning of smart multi-energy systems incorporating transportation, natural gas and active distribution networks," Applied Energy, Elsevier, vol. 269(C).
    4. Naghikhani, Ali & Hosseini, Seyed Mohammad Hassan, 2022. "Optimal thermal and power planning considering economic and environmental issues in peak load management," Energy, Elsevier, vol. 239(PA).
    5. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    6. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).
    7. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    8. Mahyar Lasemi Imeni & Mohammad Sadegh Ghazizadeh & Mohammad Ali Lasemi & Zhenyu Yang, 2023. "Optimal Scheduling of a Hydrogen-Based Energy Hub Considering a Stochastic Multi-Attribute Decision-Making Approach," Energies, MDPI, vol. 16(2), pages 1-23, January.
    9. Mu, Chenlu & Ding, Tao & Qu, Ming & Zhou, Quan & Li, Fangxing & Shahidehpour, Mohammad, 2020. "Decentralized optimization operation for the multiple integrated energy systems with energy cascade utilization," Applied Energy, Elsevier, vol. 280(C).
    10. Li, Jinghua & Zhou, Jiasheng & Chen, Bo, 2020. "Review of wind power scenario generation methods for optimal operation of renewable energy systems," Applied Energy, Elsevier, vol. 280(C).
    11. Gjorgievski, Vladimir Z. & Cundeva, Snezana & Georghiou, George E., 2021. "Social arrangements, technical designs and impacts of energy communities: A review," Renewable Energy, Elsevier, vol. 169(C), pages 1138-1156.
    12. Çiçek, Alper & Şengör, İbrahim & Erenoğlu, Ayşe Kübra & Erdinç, Ozan, 2020. "Decision making mechanism for a smart neighborhood fed by multi-energy systems considering demand response," Energy, Elsevier, vol. 208(C).
    13. Oskouei, Morteza Zare & Mohammadi-Ivatloo, Behnam & Abapour, Mehdi & Shafiee, Mahmood & Anvari-Moghaddam, Amjad, 2021. "Privacy-preserving mechanism for collaborative operation of high-renewable power systems and industrial energy hubs," Applied Energy, Elsevier, vol. 283(C).
    14. Wu, Di & Han, Zhonghe & Liu, Zhijian & Li, Peng & Ma, Fanfan & Zhang, Han & Yin, Yunxing & Yang, Xinyan, 2021. "Comparative study of optimization method and optimal operation strategy for multi-scenario integrated energy system," Energy, Elsevier, vol. 217(C).
    15. Christina Papadimitriou & Marialaura Di Somma & Chrysanthos Charalambous & Martina Caliano & Valeria Palladino & Andrés Felipe Cortés Borray & Amaia González-Garrido & Nerea Ruiz & Giorgio Graditi, 2023. "A Comprehensive Review of the Design and Operation Optimization of Energy Hubs and Their Interaction with the Markets and External Networks," Energies, MDPI, vol. 16(10), pages 1-46, May.
    16. Wang, Rutian & Wen, Xiangyun & Wang, Xiuyun & Fu, Yanbo & Zhang, Yu, 2022. "Low carbon optimal operation of integrated energy system based on carbon capture technology, LCA carbon emissions and ladder-type carbon trading," Applied Energy, Elsevier, vol. 311(C).
    17. Wang, Yongli & Li, Ruiwen & Dong, Huanran & Ma, Yuze & Yang, Jiale & Zhang, Fuwei & Zhu, Jinrong & Li, Shuqing, 2019. "Capacity planning and optimization of business park-level integrated energy system based on investment constraints," Energy, Elsevier, vol. 189(C).
    18. Ma, Tengfei & Pei, Wei & Deng, Wei & Xiao, Hao & Yang, Yanhong & Tang, Chenghong, 2022. "A Nash bargaining-based cooperative planning and operation method for wind-hydrogen-heat multi-agent energy system," Energy, Elsevier, vol. 239(PE).
    19. Dong, Xiangxiang & Wu, Jiang & Xu, Zhanbo & Liu, Kun & Guan, Xiaohong, 2022. "Optimal coordination of hydrogen-based integrated energy systems with combination of hydrogen and water storage," Applied Energy, Elsevier, vol. 308(C).
    20. Petkov, Ivalin & Gabrielli, Paolo & Spokaite, Marija, 2021. "The impact of urban district composition on storage technology reliance: trade-offs between thermal storage, batteries, and power-to-hydrogen," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223006643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.