IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v312y2022ics030626192200157x.html
   My bibliography  Save this article

Distribution system planning considering peak shaving of energy station

Author

Listed:
  • He, Shuaijia
  • Gao, Hongjun
  • Liu, Junyong
  • Zhang, Xi
  • Chen, Zhe

Abstract

Energy stations (ESs) connected in a distribution system (DS) may lead to great impacts on the planning scheme of DS. In this context, this paper carries out a long-term DS planning model considering the peak shaving of ES, which is achieved by scheduling the input energy of ES. By regarding DS and ES as different stakeholders, a decentralized framework is devised to shave the electric peak loads in the DS planning, where the coupling relationship between the TOU price and exchanged power (e.g., the input power of ES) is clearly expressed. Specifically, an explicit adjustment formula is developed to represent the coupling relationship based on the concept of elasticity. In addition, an easily reformulated solution method is developed to address the probability distribution (PD) uncertainty of electric and cooling loads in the uncertainty-moment-based distributionally robust optimization (DRO) planning model. The chance-constrained power balance is expressed in a second order conic (SOC) format based on the conditional value at risk (CVaR) method and duality theory. Then, the SOC constraints are linearized according to the polyhedral linearization method. Furthermore, the bilinear terms of the planning model are respectively linearized by the McCormick and big-M methods. Finally, the proposed planning model is tested on a modified IEEE 33-node DS with an ES and a practical 99-node DS with an ES. Numerical results show that the proposed planning model is effective in managing PD uncertainties of loads as well as reducing costs of DS.

Suggested Citation

  • He, Shuaijia & Gao, Hongjun & Liu, Junyong & Zhang, Xi & Chen, Zhe, 2022. "Distribution system planning considering peak shaving of energy station," Applied Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:appene:v:312:y:2022:i:c:s030626192200157x
    DOI: 10.1016/j.apenergy.2022.118692
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192200157X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118692?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).
    2. Liu, Zuming & Zhao, Yingru & Wang, Xiaonan, 2020. "Long-term economic planning of combined cooling heating and power systems considering energy storage and demand response," Applied Energy, Elsevier, vol. 279(C).
    3. Li, Xiaozhu & Wang, Weiqing & Wang, Haiyun, 2021. "Hybrid time-scale energy optimal scheduling strategy for integrated energy system with bilateral interaction with supply and demand," Applied Energy, Elsevier, vol. 285(C).
    4. Chen, Cong & Sun, Hongbin & Shen, Xinwei & Guo, Ye & Guo, Qinglai & Xia, Tian, 2019. "Two-stage robust planning-operation co-optimization of energy hub considering precise energy storage economic model," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    5. Troitzsch, Sebastian & Sreepathi, Bhargava Krishna & Huynh, Thanh Phong & Moine, Aurelie & Hanif, Sarmad & Fonseca, Jimeno & Hamacher, Thomas, 2020. "Optimal electric-distribution-grid planning considering the demand-side flexibility of thermal building systems for a test case in Singapore," Applied Energy, Elsevier, vol. 273(C).
    6. Zhang, Shenxi & Cheng, Haozhong & Li, Ke & Tai, Nengling & Wang, Dan & Li, Furong, 2018. "Multi-objective distributed generation planning in distribution network considering correlations among uncertainties," Applied Energy, Elsevier, vol. 226(C), pages 743-755.
    7. Su, Huai & Chi, Lixun & Zio, Enrico & Li, Zhenlin & Fan, Lin & Yang, Zhe & Liu, Zhe & Zhang, Jinjun, 2021. "An integrated, systematic data-driven supply-demand side management method for smart integrated energy systems," Energy, Elsevier, vol. 235(C).
    8. Gao, Hongjun & Xu, Song & Liu, Youbo & Wang, Lingfeng & Xiang, Yingmeng & Liu, Junyong, 2020. "Decentralized optimal operation model for cooperative microgrids considering renewable energy uncertainties," Applied Energy, Elsevier, vol. 262(C).
    9. Mehrjerdi, Hasan, 2019. "Simultaneous load leveling and voltage profile improvement in distribution networks by optimal battery storage planning," Energy, Elsevier, vol. 181(C), pages 916-926.
    10. Wang, Luhao & Zhang, Bingying & Li, Qiqiang & Song, Wen & Li, Guanguan, 2019. "Robust distributed optimization for energy dispatch of multi-stakeholder multiple microgrids under uncertainty," Applied Energy, Elsevier, vol. 255(C).
    11. He, Shuaijia & Gao, Hongjun & Wang, Lingfeng & Xiang, Yingmeng & Liu, Junyong, 2020. "Distributionally robust planning for integrated energy systems incorporating electric-thermal demand response," Energy, Elsevier, vol. 213(C).
    12. Wang, Dan & Zhi, Yun-qiang & Jia, Hong-jie & Hou, Kai & Zhang, Shen-xi & Du, Wei & Wang, Xu-dong & Fan, Meng-hua, 2019. "Optimal scheduling strategy of district integrated heat and power system with wind power and multiple energy stations considering thermal inertia of buildings under different heating regulation modes," Applied Energy, Elsevier, vol. 240(C), pages 341-358.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang, Yue & Dai, Jiakun & Xue, Ping & Liu, Junyong, 2023. "Autonomous topology planning for distribution network expansion: A learning-based decoupled optimization method," Applied Energy, Elsevier, vol. 348(C).
    2. Wu, Huayi & Xu, Zhao, 2024. "Multi-energy flow calculation in integrated energy system via topological graph attention convolutional network with transfer learning," Energy, Elsevier, vol. 303(C).
    3. Zhichun Yang & Gang Han & Fan Yang & Yu Shen & Yu Liu & Huaidong Min & Zhiqiang Zhou & Bin Zhou & Wei Hu & Yang Lei, 2023. "A Distribution Network Planning Method Considering the Distributed Energy Resource Flexibility of Virtual Power Plants," Sustainability, MDPI, vol. 15(19), pages 1-17, September.
    4. Henni, Sarah & Becker, Jonas & Staudt, Philipp & vom Scheidt, Frederik & Weinhardt, Christof, 2022. "Industrial peak shaving with battery storage using a probabilistic forecasting approach: Economic evaluation of risk attitude," Applied Energy, Elsevier, vol. 327(C).
    5. Cerna, Fernando V. & Dantas, Jamile T. & Naderi, Ehsan & Contreras, Javier, 2024. "Optimal strategy to reduce energy waste in an electricity distribution network through direct/indirect bulk load control," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Chun & Zhao, Jun & Chen, Long & Liu, Ying & Wang, Wei, 2022. "An adaptive piecewise linearized weighted directed graph for the modeling and operational optimization of integrated energy systems," Energy, Elsevier, vol. 244(PA).
    2. Lei, Yang & Wang, Dan & Jia, Hongjie & Li, Jiaxi & Chen, Jingcheng & Li, Jingru & Yang, Zhihong, 2021. "Multi-stage stochastic planning of regional integrated energy system based on scenario tree path optimization under long-term multiple uncertainties," Applied Energy, Elsevier, vol. 300(C).
    3. Zeljković, Čedomir & Mršić, Predrag & Erceg, Bojan & Lekić, Đorđe & Kitić, Nemanja & Matić, Petar, 2022. "Optimal sizing of photovoltaic-wind-diesel-battery power supply for mobile telephony base stations," Energy, Elsevier, vol. 242(C).
    4. He, Shuaijia & Gao, Hongjun & Chen, Zhe & Liu, Junyong & Zhao, Liang & Wu, Gang & Xu, Song, 2022. "Low-carbon distribution system planning considering flexible support of zero-carbon energy station," Energy, Elsevier, vol. 244(PB).
    5. Qiu, Haifeng & You, Fengqi, 2020. "Decentralized-distributed robust electric power scheduling for multi-microgrid systems," Applied Energy, Elsevier, vol. 269(C).
    6. Han, Dongho & Lee, Jay H., 2021. "Two-stage stochastic programming formulation for optimal design and operation of multi-microgrid system using data-based modeling of renewable energy sources," Applied Energy, Elsevier, vol. 291(C).
    7. Sun, Peng & Teng, Yun & Chen, Zhe, 2021. "Robust coordinated optimization for multi-energy systems based on multiple thermal inertia numerical simulation and uncertainty analysis," Applied Energy, Elsevier, vol. 296(C).
    8. Liu, Liu & Wang, Dan & Hou, Kai & Jia, Hong-jie & Li, Si-yuan, 2020. "Region model and application of regional integrated energy system security analysis," Applied Energy, Elsevier, vol. 260(C).
    9. Lei, Yang & Wang, Dan & Jia, Hongjie & Chen, Jingcheng & Li, Jingru & Song, Yi & Li, Jiaxi, 2020. "Multi-objective stochastic expansion planning based on multi-dimensional correlation scenario generation method for regional integrated energy system integrated renewable energy," Applied Energy, Elsevier, vol. 276(C).
    10. Qiu, Haifeng & Vinod, Ashwin & Lu, Shuai & Gooi, Hoay Beng & Pan, Guangsheng & Zhang, Suhan & Veerasamy, Veerapandiyan, 2023. "Decentralized mixed-integer optimization for robust integrated electricity and heat scheduling," Applied Energy, Elsevier, vol. 350(C).
    11. Gejirifu De & Xinlei Wang & Xueqin Tian & Tong Xu & Zhongfu Tan, 2022. "A Collaborative Optimization Model for Integrated Energy System Considering Multi-Load Demand Response," Energies, MDPI, vol. 15(6), pages 1-26, March.
    12. Diptish Saha & Najmeh Bazmohammadi & Juan C. Vasquez & Josep M. Guerrero, 2023. "Multiple Microgrids: A Review of Architectures and Operation and Control Strategies," Energies, MDPI, vol. 16(2), pages 1-32, January.
    13. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    14. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    15. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    16. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    17. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    18. Li, Yinxiao & Wang, Yi & Chen, Qixin, 2020. "Study on the impacts of meteorological factors on distributed photovoltaic accommodation considering dynamic line parameters," Applied Energy, Elsevier, vol. 259(C).
    19. Wei Wei & Yusong Guo & Kai Hou & Kai Yuan & Yi Song & Hongjie Jia & Chongbo Sun, 2021. "Distributed Thermal Energy Storage Configuration of an Urban Electric and Heat Integrated Energy System Considering Medium Temperature Characteristics," Energies, MDPI, vol. 14(10), pages 1-34, May.
    20. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:312:y:2022:i:c:s030626192200157x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.