IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16472-d998049.html
   My bibliography  Save this article

A Demand Response Transaction Method for Integrated Energy Systems with a Trigonometric Membership Function-Based Uncertainty Model of Costumers’ Responsive Behaviors

Author

Listed:
  • Zhuochao Wu

    (School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China
    Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, Nanjing 210023, China)

  • Weixing Qian

    (School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China
    Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, Nanjing 210023, China)

  • Zhenya Ji

    (School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China)

Abstract

As an important regulation tool for power systems, demand response can greatly improve system flexibility and economy. However, when an integrated energy system with a large number of flexible loads is aggregated for a demand response transaction, the uncertainty in the amount of the load response should be considered. Therefore, a demand response transaction model for an integrated energy system that considers the uncertainty of customer demand responses is proposed in this paper. We first analyze the uncertainty of incentive-based demand responses. Next, we investigate the relationship between the incentive level and the fluctuation of customer response volume. The flexible loads are classified into curtailable loads, translatable loads, and replaceable loads. Fuzzy variables are then used to represent the response volume of users, and a trigonometric membership function is used to represent the degree of uncertainty in the response volume of different flexible loads. Finally, the objective functions and chance constraints containing fuzzy variables are converted into explicit equivalence classes for solving. In the case study, the impact of the uncertainty of the user response volume on the revenue of each transaction entity and the impact of the fuzzy chance constraint confidence level on the response revenue are investigated. The results show that the revenue of each transaction entity decreases to a certain extent under the consideration of the uncertainty of the user response volume; the social welfare of the whole transaction increases as the confidence level of the chance constraint changes from high to low.

Suggested Citation

  • Zhuochao Wu & Weixing Qian & Zhenya Ji, 2022. "A Demand Response Transaction Method for Integrated Energy Systems with a Trigonometric Membership Function-Based Uncertainty Model of Costumers’ Responsive Behaviors," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16472-:d:998049
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16472/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16472/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).
    2. Morteza Vahid-Ghavidel & Mohammad Sadegh Javadi & Matthew Gough & Sérgio F. Santos & Miadreza Shafie-khah & João P.S. Catalão, 2020. "Demand Response Programs in Multi-Energy Systems: A Review," Energies, MDPI, vol. 13(17), pages 1-17, August.
    3. Wu, Y.J. & Liang, X.Y. & Huang, T. & Lin, Z.W. & Li, Z.X. & Hossain, Mohammad Farhad, 2021. "A hierarchical framework for renewable energy sources consumption promotion among microgrids through two-layer electricity prices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsoumalis, Georgios I. & Bampos, Zafeirios N. & Biskas, Pandelis N. & Keranidis, Stratos D. & Symeonidis, Polychronis A. & Voulgarakis, Dimitrios K., 2022. "A novel system for providing explicit demand response from domestic natural gas boilers," Applied Energy, Elsevier, vol. 317(C).
    2. Ziółkowski, Paweł & Stasiak, Kamil & Amiri, Milad & Mikielewicz, Dariusz, 2023. "Negative carbon dioxide gas power plant integrated with gasification of sewage sludge," Energy, Elsevier, vol. 262(PB).
    3. Yuriy Leonidovich Zhukovskiy & Margarita Sergeevna Kovalchuk & Daria Evgenievna Batueva & Nikita Dmitrievich Senchilo, 2021. "Development of an Algorithm for Regulating the Load Schedule of Educational Institutions Based on the Forecast of Electric Consumption within the Framework of Application of the Demand Response," Sustainability, MDPI, vol. 13(24), pages 1-26, December.
    4. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu & Shen, Boyang, 2022. "A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks," Energy, Elsevier, vol. 250(C).
    5. Kılıç Depren, Serpil & Kartal, Mustafa Tevfik & Ertuğrul, Hasan Murat & Depren, Özer, 2022. "The role of data frequency and method selection in electricity price estimation: Comparative evidence from Turkey in pre-pandemic and pandemic periods," Renewable Energy, Elsevier, vol. 186(C), pages 217-225.
    6. Kruk-Gotzman, Sylwia & Ziółkowski, Paweł & Iliev, Iliya & Negreanu, Gabriel-Paul & Badur, Janusz, 2023. "Techno-economic evaluation of combined cycle gas turbine and a diabatic compressed air energy storage integration concept," Energy, Elsevier, vol. 266(C).
    7. Chen, Maozhi & Lu, Hao & Chang, Xiqiang & Liao, Haiyan, 2023. "An optimization on an integrated energy system of combined heat and power, carbon capture system and power to gas by considering flexible load," Energy, Elsevier, vol. 273(C).
    8. Mishra, Kakuli & Basu, Srinka & Maulik, Ujjwal, 2022. "Load profile mining using directed weighted graphs with application towards demand response management," Applied Energy, Elsevier, vol. 311(C).
    9. Zeljković, Čedomir & Mršić, Predrag & Erceg, Bojan & Lekić, Đorđe & Kitić, Nemanja & Matić, Petar, 2022. "Optimal sizing of photovoltaic-wind-diesel-battery power supply for mobile telephony base stations," Energy, Elsevier, vol. 242(C).
    10. He, Shuaijia & Gao, Hongjun & Liu, Junyong & Zhang, Xi & Chen, Zhe, 2022. "Distribution system planning considering peak shaving of energy station," Applied Energy, Elsevier, vol. 312(C).
    11. Ren, Hongbo & Jiang, Zipei & Wu, Qiong & Li, Qifen & Lv, Hang, 2023. "Optimal planning of an economic and resilient district integrated energy system considering renewable energy uncertainty and demand response under natural disasters," Energy, Elsevier, vol. 277(C).
    12. Jing Yu & Jicheng Liu & Yajing Wen & Xue Yu, 2023. "Economic Optimal Coordinated Dispatch of Power for Community Users Considering Shared Energy Storage and Demand Response under Blockchain," Sustainability, MDPI, vol. 15(8), pages 1-26, April.
    13. Khorramfar, Rahman & Mallapragada, Dharik & Amin, Saurabh, 2024. "Electric-gas infrastructure planning for deep decarbonization of energy systems," Applied Energy, Elsevier, vol. 354(PA).
    14. Kiani-Moghaddam, Mohammad & Soltani, Mohsen N. & Kalogirou, Soteris A. & Mahian, Omid & Arabkoohsar, Ahmad, 2023. "A review of neighborhood level multi-carrier energy hubs—uncertainty and problem-solving process," Energy, Elsevier, vol. 281(C).
    15. Yin, Linfei & Qiu, Yao, 2022. "Neural network dynamic differential control for long-term price guidance mechanism of flexible energy service providers," Energy, Elsevier, vol. 255(C).
    16. Gao, Mingfei & Han, Zhonghe & Zhang, Ce & Li, Peng & Wu, Di & Li, Peng, 2023. "Optimal configuration for regional integrated energy systems with multi-element hybrid energy storage," Energy, Elsevier, vol. 277(C).
    17. Alabi, Tobi Michael & Aghimien, Emmanuel I. & Agbajor, Favour D. & Yang, Zaiyue & Lu, Lin & Adeoye, Adebusola R. & Gopaluni, Bhushan, 2022. "A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems," Renewable Energy, Elsevier, vol. 194(C), pages 822-849.
    18. Takele Ferede Agajie & Armand Fopah-Lele & Ahmed Ali & Isaac Amoussou & Baseem Khan & Mahmoud Elsisi & Wirnkar Basil Nsanyuy & Om Prakash Mahela & Roberto Marcelo Álvarez & Emmanuel Tanyi, 2023. "Integration of Superconducting Magnetic Energy Storage for Fast-Response Storage in a Hybrid Solar PV-Biogas with Pumped-Hydro Energy Storage Power Plant," Sustainability, MDPI, vol. 15(13), pages 1-30, July.
    19. Ding, Yixing & Xu, Qingshan & Hao, Lili & Xia, Yuanxing, 2023. "A Stackelberg Game-based robust optimization for user-side energy storage configuration and power pricing," Energy, Elsevier, vol. 283(C).
    20. Gejirifu De & Xinlei Wang & Xueqin Tian & Tong Xu & Zhongfu Tan, 2022. "A Collaborative Optimization Model for Integrated Energy System Considering Multi-Load Demand Response," Energies, MDPI, vol. 15(6), pages 1-26, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16472-:d:998049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.