IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2908-d368030.html
   My bibliography  Save this article

Research on Real-Time Optimized Operation and Dispatching Strategy for Integrated Energy System Based on Error Correction

Author

Listed:
  • Aidong Zeng

    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China
    Jiangsu Collaborative Innovation Center for Smart Distribution Network, Nanjing Institute of Technology, Nanjing 211100, China)

  • Sipeng Hao

    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China
    Jiangsu Collaborative Innovation Center for Smart Distribution Network, Nanjing Institute of Technology, Nanjing 211100, China)

  • Jia Ning

    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China
    Jiangsu Collaborative Innovation Center for Smart Distribution Network, Nanjing Institute of Technology, Nanjing 211100, China)

  • Qingshan Xu

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Ling Jiang

    (Electric Power Research Institute, State Grid Tianjin Electric Power Company, State Grid, Tianjin 300010, China)

Abstract

A real-time error correction operation model for an integrated energy system is proposed in this paper, based on the analysis of the real-time optimized operation structure of an integrated energy system and the characteristics of the system. The model makes real-time corrections to the day-ahead operation strategy of the integrated energy system, to offset forecast errors from the renewable power generation system and multi-energy load system. When unbalanced power occurs in the system due to prediction errors, the model comprehensively considers the total capacity of each energy supply and energy storage equipment, adjustable margin, power climbing speed and adjustment cost, to formulate the droop rate which determines the unbalanced power that each device will undertake at the next time interval, while taking the day-ahead dispatching goals of the system into consideration. The case study shows that the dispatching strategy obtained by the real-time error correction operation model makes the power output change trend of the energy supply equipment consistent with the day-ahead dispatching plan at the next time interval, which ensures the safety, stability and economy of the real-time operation of the integrated energy system.

Suggested Citation

  • Aidong Zeng & Sipeng Hao & Jia Ning & Qingshan Xu & Ling Jiang, 2020. "Research on Real-Time Optimized Operation and Dispatching Strategy for Integrated Energy System Based on Error Correction," Energies, MDPI, vol. 13(11), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2908-:d:368030
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2908/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2908/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng, C.Y. & Wu, J.Y. & Zhai, X.Q., 2014. "A novel operation strategy for CCHP systems based on minimum distance," Applied Energy, Elsevier, vol. 128(C), pages 325-335.
    2. Kang, Ligai & Yang, Junhong & An, Qingsong & Deng, Shuai & Zhao, Jun & Wang, Hui & Li, Zelin, 2017. "Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff," Applied Energy, Elsevier, vol. 194(C), pages 454-466.
    3. Miao Li & Hailin Mu & Huanan Li, 2013. "Analysis and Assessments of Combined Cooling, Heating and Power Systems in Various Operation Modes for a Building in China, Dalian," Energies, MDPI, vol. 6(5), pages 1-22, May.
    4. Stadler, M. & Kloess, M. & Groissböck, M. & Cardoso, G. & Sharma, R. & Bozchalui, M.C. & Marnay, C., 2013. "Electric storage in California’s commercial buildings," Applied Energy, Elsevier, vol. 104(C), pages 711-722.
    5. Wang, Jiangjiang & Yang, Ying & Mao, Tianzhi & Sui, Jun & Jin, Hongguang, 2015. "Life cycle assessment (LCA) optimization of solar-assisted hybrid CCHP system," Applied Energy, Elsevier, vol. 146(C), pages 38-52.
    6. Olaszi, Balint D. & Ladanyi, Jozsef, 2017. "Comparison of different discharge strategies of grid-connected residential PV systems with energy storage in perspective of optimal battery energy storage system sizing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 710-718.
    7. Jayasekara, Saliya & Halgamuge, Saman K. & Attalage, Rahula A. & Rajarathne, Rohitha, 2014. "Optimum sizing and tracking of combined cooling heating and power systems for bulk energy consumers," Applied Energy, Elsevier, vol. 118(C), pages 124-134.
    8. Guillermo Rey & Carlos Ulloa & José Luís Míguez & Antón Cacabelos, 2016. "Suitability Assessment of an ICE-Based Micro-CCHP Unit in Different Spanish Climatic Zones: Application of an Experimental Model in Transient Simulation," Energies, MDPI, vol. 9(11), pages 1-13, November.
    9. Dongxiao Niu & Di Pu & Shuyu Dai, 2018. "Ultra-Short-Term Wind-Power Forecasting Based on the Weighted Random Forest Optimized by the Niche Immune Lion Algorithm," Energies, MDPI, vol. 11(5), pages 1-21, April.
    10. Li, Longxi & Yu, Shiwei & Mu, Hailin & Li, Huanan, 2018. "Optimization and evaluation of CCHP systems considering incentive policies under different operation strategies," Energy, Elsevier, vol. 162(C), pages 825-840.
    11. Xu, Xiandong & Jin, Xiaolong & Jia, Hongjie & Yu, Xiaodan & Li, Kang, 2015. "Hierarchical management for integrated community energy systems," Applied Energy, Elsevier, vol. 160(C), pages 231-243.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenying Li & Ming Tang & Xinzhen Zhang & Danhui Gao & Jian Wang, 2022. "Optimal Operation for Regional IES Considering the Demand- and Supply-Side Characteristics," Energies, MDPI, vol. 15(4), pages 1-27, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2018. "Effect of load following strategies, hardware, and thermal load distribution on stand-alone hybrid CCHP systems," Applied Energy, Elsevier, vol. 220(C), pages 735-753.
    2. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    3. Song, Zhihui & Liu, Tao & Lin, Qizhao, 2020. "Multi-objective optimization of a solar hybrid CCHP system based on different operation modes," Energy, Elsevier, vol. 206(C).
    4. Wang, Zefeng & Han, Wei & Zhang, Na & Liu, Meng & Jin, Hongguang, 2017. "Effect of an alternative operating strategy for gas turbine on a combined cooling heating and power system," Applied Energy, Elsevier, vol. 205(C), pages 163-172.
    5. Kang, Ligai & Yang, Junhong & An, Qingsong & Deng, Shuai & Zhao, Jun & Wang, Hui & Li, Zelin, 2017. "Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff," Applied Energy, Elsevier, vol. 194(C), pages 454-466.
    6. Afzali, Sayyed Faridoddin & Mahalec, Vladimir, 2017. "Optimal design, operation and analytical criteria for determining optimal operating modes of a CCHP with fired HRSG, boiler, electric chiller and absorption chiller," Energy, Elsevier, vol. 139(C), pages 1052-1065.
    7. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2021. "Multi-objective optimization and evaluation of hybrid CCHP systems for different building types," Energy, Elsevier, vol. 215(PA).
    8. Zhang, Na & Wang, Zefeng & Lior, Noam & Han, Wei, 2018. "Advancement of distributed energy methods by a novel high efficiency solar-assisted combined cooling, heating and power system," Applied Energy, Elsevier, vol. 219(C), pages 179-186.
    9. Li, Minzhi & Jiang, Xi Zhuo & Zheng, Danxing & Zeng, Guangbiao & Shi, Lin, 2016. "Thermodynamic boundaries of energy saving in conventional CCHP (Combined Cooling, Heating and Power) systems," Energy, Elsevier, vol. 94(C), pages 243-249.
    10. Kang, Ligai & Wu, Xiaojing & Yuan, Xiaoxue & Ma, Kunru & Wang, Yongzhen & Zhao, Jun & An, Qingsong, 2021. "Influence analysis of energy policies on comprehensive performance of CCHP system in different buildings," Energy, Elsevier, vol. 233(C).
    11. Chen, W.D. & Chua, K.J., 2022. "A novel and optimized operation strategy map for CCHP systems considering optimal thermal energy utilization," Energy, Elsevier, vol. 259(C).
    12. Farahnak, Mehdi & Farzaneh-Gord, Mahmood & Deymi-Dashtebayaz, Mahdi & Dashti, Farshad, 2015. "Optimal sizing of power generation unit capacity in ICE-driven CCHP systems for various residential building sizes," Applied Energy, Elsevier, vol. 158(C), pages 203-219.
    13. Ahn, Hyeunguk & Rim, Donghyun & Freihaut, James D., 2018. "Performance assessment of hybrid chiller systems for combined cooling, heating and power production," Applied Energy, Elsevier, vol. 225(C), pages 501-512.
    14. Afzali, Sayyed Faridoddin & Cotton, James S. & Mahalec, Vladimir, 2020. "Urban community energy systems design under uncertainty for specified levels of carbon dioxide emissions," Applied Energy, Elsevier, vol. 259(C).
    15. Hou, Hongjuan & Wu, Jiwen & Ding, Zeyu & Yang, Bo & Hu, Eric, 2021. "Performance analysis of a solar-assisted combined cooling, heating and power system with an improved operation strategy," Energy, Elsevier, vol. 227(C).
    16. Jie, Pengfei & Zhao, Wanyue & Yan, Fuchun & Man, Xiaoxin & Liu, Chunhua, 2022. "Economic, energetic and environmental optimization of hybrid biomass gasification-based combined cooling, heating and power system based on an improved operating strategy," Energy, Elsevier, vol. 240(C).
    17. Xiaolin Chu & Dong Yang & Jia Li, 2019. "Sustainability Assessment of Combined Cooling, Heating, and Power Systems under Carbon Emission Regulations," Sustainability, MDPI, vol. 11(21), pages 1-17, October.
    18. Ren, Fukang & Lin, Xiaozhen & Wei, Ziqing & Zhai, Xiaoqiang & Yang, Jianrong, 2022. "A novel planning method for design and dispatch of hybrid energy systems," Applied Energy, Elsevier, vol. 321(C).
    19. Tao Zhang & Minli Wang & Peihong Wang & Junyu Liang, 2020. "Optimal Design of a Combined Cooling, Heating, and Power System and Its Ability to Adapt to Uncertainty," Energies, MDPI, vol. 13(14), pages 1-17, July.
    20. Ahn, Hyeunguk & Freihaut, James D. & Rim, Donghyun, 2019. "Economic feasibility of combined cooling, heating, and power (CCHP) systems considering electricity standby tariffs," Energy, Elsevier, vol. 169(C), pages 420-432.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2908-:d:368030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.