Multi-objective optimization of a solar hybrid CCHP system based on different operation modes
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.118125
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Romero Rodríguez, Laura & Salmerón Lissén, José Manuel & Sánchez Ramos, José & Rodríguez Jara, Enrique Ángel & Álvarez Domínguez, Servando, 2016. "Analysis of the economic feasibility and reduction of a building’s energy consumption and emissions when integrating hybrid solar thermal/PV/micro-CHP systems," Applied Energy, Elsevier, vol. 165(C), pages 828-838.
- Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Particle swarm optimization for redundant building cooling heating and power system," Applied Energy, Elsevier, vol. 87(12), pages 3668-3679, December.
- Li, Longxi & Yu, Shiwei & Mu, Hailin & Li, Huanan, 2018. "Optimization and evaluation of CCHP systems considering incentive policies under different operation strategies," Energy, Elsevier, vol. 162(C), pages 825-840.
- Yang, G. & Zhai, X.Q., 2019. "Optimal design and performance analysis of solar hybrid CCHP system considering influence of building type and climate condition," Energy, Elsevier, vol. 174(C), pages 647-663.
- Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhai, Zhiqiang (John), 2011. "Performance comparison of combined cooling heating and power system in different operation modes," Applied Energy, Elsevier, vol. 88(12), pages 4621-4631.
- Li, Miao & Mu, Hailin & Li, Nan & Ma, Baoyu, 2016. "Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system," Energy, Elsevier, vol. 99(C), pages 202-220.
- Wang, Jiangjiang & Yang, Ying & Mao, Tianzhi & Sui, Jun & Jin, Hongguang, 2015. "Life cycle assessment (LCA) optimization of solar-assisted hybrid CCHP system," Applied Energy, Elsevier, vol. 146(C), pages 38-52.
- Jayasekara, Saliya & Halgamuge, Saman K. & Attalage, Rahula A. & Rajarathne, Rohitha, 2014. "Optimum sizing and tracking of combined cooling heating and power systems for bulk energy consumers," Applied Energy, Elsevier, vol. 118(C), pages 124-134.
- Konak, Abdullah & Coit, David W. & Smith, Alice E., 2006. "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 992-1007.
- Calise, Francesco & Dentice d'Accadia, Massimo & Libertini, Luigi & Quiriti, Edoardo & Vicidomini, Maria, 2017. "A novel tool for thermoeconomic analysis and optimization of trigeneration systems: A case study for a hospital building in Italy," Energy, Elsevier, vol. 126(C), pages 64-87.
- Ahn, Hyeunguk & Freihaut, James D. & Rim, Donghyun, 2019. "Economic feasibility of combined cooling, heating, and power (CCHP) systems considering electricity standby tariffs," Energy, Elsevier, vol. 169(C), pages 420-432.
- Soheyli, Saman & Shafiei Mayam, Mohamad Hossein & Mehrjoo, Mehri, 2016. "Modeling a novel CCHP system including solar and wind renewable energy resources and sizing by a CC-MOPSO algorithm," Applied Energy, Elsevier, vol. 184(C), pages 375-395.
- Ershadi, Hamed & Karimipour, Arash, 2018. "Present a multi-criteria modeling and optimization (energy, economic and environmental) approach of industrial combined cooling heating and power (CCHP) generation systems using the genetic algorithm,," Energy, Elsevier, vol. 149(C), pages 286-295.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ghersi, Djamal Eddine & Amoura, Meriem & Loubar, Khaled & Desideri, Umberto & Tazerout, Mohand, 2021. "Multi-objective optimization of CCHP system with hybrid chiller under new electric load following operation strategy," Energy, Elsevier, vol. 219(C).
- Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2021. "Integrating renewables into stand-alone hybrid systems meeting electric, heating, and cooling loads: A case study," Renewable Energy, Elsevier, vol. 180(C), pages 1222-1236.
- Deng, Yan & Zeng, Rong & Liu, Yicai, 2022. "A novel off-design model to optimize combined cooling, heating and power system with hybrid chillers for different operation strategies," Energy, Elsevier, vol. 239(PB).
- Lingmin, Chen & Jiekang, Wu & Fan, Wu & Huiling, Tang & Changjie, Li & Yan, Xiong, 2020. "Energy flow optimization method for multi-energy system oriented to combined cooling, heating and power," Energy, Elsevier, vol. 211(C).
- Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2018. "Effect of load following strategies, hardware, and thermal load distribution on stand-alone hybrid CCHP systems," Applied Energy, Elsevier, vol. 220(C), pages 735-753.
- Chen, Xiaoyuan & Chen, Yu & Zhang, Mingshun & Jiang, Shan & Gou, Huayu & Pang, Zhou & Shen, Boyang, 2021. "Hospital-oriented quad-generation (HOQG)—A combined cooling, heating, power and gas (CCHPG) system," Applied Energy, Elsevier, vol. 300(C).
- Wang, Jiangjiang & Yang, Ying, 2017. "A hybrid operating strategy of combined cooling, heating and power system for multiple demands considering domestic hot water preferentially: A case study," Energy, Elsevier, vol. 122(C), pages 444-457.
- Li, Ruonan & Mahalec, Vladimir, 2022. "Integrated design and operation of energy systems for residential buildings, commercial buildings, and light industries," Applied Energy, Elsevier, vol. 305(C).
- Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2021. "Multi-objective optimization and evaluation of hybrid CCHP systems for different building types," Energy, Elsevier, vol. 215(PA).
- Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
- Aidong Zeng & Sipeng Hao & Jia Ning & Qingshan Xu & Ling Jiang, 2020. "Research on Real-Time Optimized Operation and Dispatching Strategy for Integrated Energy System Based on Error Correction," Energies, MDPI, vol. 13(11), pages 1-21, June.
- Ren, Xin-Yu & Li, Ling-Ling & Ji, Bing-Xiang & Liu, Jia-Qi, 2024. "Design and analysis of solar hybrid combined cooling, heating and power system: A bi-level optimization model," Energy, Elsevier, vol. 292(C).
- Deng, Yan & Liu, Yicai & Zeng, Rong & Wang, Qianxu & Li, Zheng & Zhang, Yu & Liang, Heng, 2021. "A novel operation strategy based on black hole algorithm to optimize combined cooling, heating, and power-ground source heat pump system," Energy, Elsevier, vol. 229(C).
- Kang, Ligai & Wu, Xiaojing & Yuan, Xiaoxue & Ma, Kunru & Wang, Yongzhen & Zhao, Jun & An, Qingsong, 2021. "Influence analysis of energy policies on comprehensive performance of CCHP system in different buildings," Energy, Elsevier, vol. 233(C).
- Ahn, Hyeunguk & Rim, Donghyun & Freihaut, James D., 2018. "Performance assessment of hybrid chiller systems for combined cooling, heating and power production," Applied Energy, Elsevier, vol. 225(C), pages 501-512.
- Zhao, Xinyu & Yang, Sheng & Liu, Zhanjun & Wang, Deqiang & Du, Zengzhi & Ren, Jingzheng, 2024. "Optimization and exergoeconomic analysis of a solar-powered ORC-VCR-CCHP system based on a ternary refrigerant selection model," Energy, Elsevier, vol. 290(C).
- Ren, Fukang & Lin, Xiaozhen & Wei, Ziqing & Zhai, Xiaoqiang & Yang, Jianrong, 2022. "A novel planning method for design and dispatch of hybrid energy systems," Applied Energy, Elsevier, vol. 321(C).
- Yang, Xiaohui & Huang, Zezhong & Xiao, Riying & Wu, Chilv & Zhang, Zhonglian & Mei, Linghao, 2024. "Optimisation and analysis of an integrated energy system with hydrogen supply using solar spectral beam splitting pre-processing," Energy, Elsevier, vol. 287(C).
- Ju, Liwei & Tan, Zhongfu & Li, Huanhuan & Tan, Qingkun & Yu, Xiaobao & Song, Xiaohua, 2016. "Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China," Energy, Elsevier, vol. 111(C), pages 322-340.
- Ahn, Hyeunguk & Freihaut, James D. & Rim, Donghyun, 2019. "Economic feasibility of combined cooling, heating, and power (CCHP) systems considering electricity standby tariffs," Energy, Elsevier, vol. 169(C), pages 420-432.
More about this item
Keywords
CCHP system; Solar energy; Multi-objective optimization; Sensitivity analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220312329. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.