IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v231y2021ics0360544221013414.html
   My bibliography  Save this article

A novel methodology for evaluating the inhibitory effect of chloride salts on the ignition risk of coal spontaneous combustion

Author

Listed:
  • Lv, Hongpeng
  • Li, Bei
  • Deng, Jun
  • Ye, Lili
  • Gao, Wei
  • Shu, Chi-Min
  • Bi, Mingshu

Abstract

When coal dust accumulations are exposed to air for a period of time, they are gradually oxidised by oxygen. This eventually leads to ignition, causing fires and explosions and exerting a pernicious environmental impact. In the present study, the ignition risk of coal spontaneous combustion (CSC) under the influence of NaCl, KCl, and MgCl2 solution was analysed using hot plate tests. Methods for determining the suppression efficiency of each of the chloride salts were designed according to the minimum ignition temperature of the dust layer and ignition delay time. An evaluation methodology with consideration of both temperature and time parameters was formulated. The results showed that the maximum inhibitory effect and the minimum risk index were observed when MgCl2 solution was used. Moreover, the mechanisms by which the salts suppressed CSC was investigated and compared according to their physicochemical effects. Notably, NaCl and KCl promoted CSC in the smouldering process, whereas the hydrate formed by MgCl2 solution (MgCl2·6H2O) consistently inhibited CSC. The methodology proposed in present study provides significance access to evaluate the ignition risk of CSC in industrial sites where coal dust accumulates.

Suggested Citation

  • Lv, Hongpeng & Li, Bei & Deng, Jun & Ye, Lili & Gao, Wei & Shu, Chi-Min & Bi, Mingshu, 2021. "A novel methodology for evaluating the inhibitory effect of chloride salts on the ignition risk of coal spontaneous combustion," Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:energy:v:231:y:2021:i:c:s0360544221013414
    DOI: 10.1016/j.energy.2021.121093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221013414
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xuyao Qi & Cunxiang Wei & Qizhong Li & Libin Zhang, 2016. "Controlled-release inhibitor for preventing the spontaneous combustion of coal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 891-901, June.
    2. Li, Bei & Liu, Gang & Bi, Ming-Shu & Li, Zhen-Bao & Han, Bing & Shu, Chi-Min, 2021. "Self-ignition risk classification for coal dust layers of three coal types on a hot surface," Energy, Elsevier, vol. 216(C).
    3. Zhao, Jingyu & Wang, Tao & Deng, Jun & Shu, Chi-Min & Zeng, Qiang & Guo, Tao & Zhang, Yuxuan, 2020. "Microcharacteristic analysis of CH4 emissions under different conditions during coal spontaneous combustion with high-temperature oxidation and in situ FTIR," Energy, Elsevier, vol. 209(C).
    4. Lü, Hui-Fei & Xiao, Yang & Deng, Jun & Li, Da-jiang & Yin, Lan & Shu, Chi-Min, 2019. "Inhibiting effects of 1-butyl-3-methyl imidazole tetrafluoroborate on coal spontaneous combustion under different oxygen concentrations," Energy, Elsevier, vol. 186(C).
    5. Zhang, You & Yuan, Zengwei & Margni, Manuele & Bulle, Cécile & Hua, Hui & Jiang, Songyan & Liu, Xuewei, 2019. "Intensive carbon dioxide emission of coal chemical industry in China," Applied Energy, Elsevier, vol. 236(C), pages 540-550.
    6. Deng, Jun & Yang, Yi & Zhang, Yan-Ni & Liu, Bo & Shu, Chi-Min, 2018. "Inhibiting effects of three commercial inhibitors in spontaneous coal combustion," Energy, Elsevier, vol. 160(C), pages 1174-1185.
    7. Musa, S. Danlami & Zhonghua, Tang & Ibrahim, Abdullateef O. & Habib, Mukhtar, 2018. "China's energy status: A critical look at fossils and renewable options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2281-2290.
    8. Peng, Gongzhuang & Wang, Hongwei & Song, Xiao & Zhang, Heming, 2017. "Intelligent management of coal stockpiles using improved grey spontaneous combustion forecasting models," Energy, Elsevier, vol. 132(C), pages 269-279.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Wei & Gao, Ao & Sun, Weili & Liang, Yuntao & He, Zhenglong & Li, Jinliang & Sun, Yong & Song, Shuanglin & Meng, Shaocong & Cao, Yingjiazi, 2022. "Experimental study on inhibition of spontaneous combustion of different-rank coals by high-performance m-Cresol water-based inhibitor solutions," Energy, Elsevier, vol. 261(PA).
    2. Bai, Zujin & Deng, Jun & Wang, Caiping & Hou, Yanan & Zhang, Yanni & Kang, Furu & Ramakrishna, Seeram, 2023. "Study on the mechanism of lignite oxidation inhibition by antioxidant resveratrol," Energy, Elsevier, vol. 273(C).
    3. Lu, Wei & Gao, Ao & Liang, Yuntao & He, Zhenglong & Li, Jinliang & Sun, Yong & Song, Shuanglin & Meng, Shaocong, 2023. "Stable and highly efficient HMDS terminated m-Cresol inhibitor for inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 282(C).
    4. Liu, Wei & Chu, Xiangyu & Xu, Hao & Chen, Wei & Ma, Liwei & Qin, Yueping & Wei, Jun, 2022. "Oxidation reaction constants for coal spontaneous combustion under inert gas environments: An experimental investigation," Energy, Elsevier, vol. 247(C).
    5. Sun, Lulu & Zhan, Mingyu & Zhang, Chen & Shi, Quanlin & Huang, Qiming & Wang, Wenjie, 2022. "Experimental study on prevention of spontaneous combustion of coal by ionic surfactant solution injection in coal seam," Energy, Elsevier, vol. 260(C).
    6. Duo, Zhang & Xuexue, Liu & Hu, Wen & Shoushi, Zhang & Hongquan, Wang & Yi, Sun & Hao, Feng, 2024. "Effect of nucleating agents on fire prevention of dry ice from compound inert gas," Energy, Elsevier, vol. 286(C).
    7. Wang, Kai & Li, Kangnan & Du, Feng & Zhang, Xiang & Wang, Yanhai & Sun, Jiazhi, 2024. "Research on prediction model of coal spontaneous combustion temperature based on SSA-CNN," Energy, Elsevier, vol. 290(C).
    8. Liang, Yuntao & Guo, Baolong & Qi, Guansheng & Song, Shuanglin & Tian, Fuchao & Cui, Xinfeng, 2024. "Method of hydrothermal treatment for coal spontaneous combustion inhibition and its application," Energy, Elsevier, vol. 293(C).
    9. Shi, Xueqiang & Wu, Hao & Jin, Penggang & Zhang, Yutao & Zhang, Yuanbo & Jiao, Fengyuan & Zhang, Yun & Cao, Weiguo, 2023. "On the influence of material and shape of the hot particles on the ignition characteristics of coal dust," Energy, Elsevier, vol. 281(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue, Di & Hu, Xiangming & Cheng, Weimin & Yu, Xiaoxiao & Wu, Mingyue & Zhao, Yanyun & Lu, Yi & Pan, Rongkun & Niu, Huiyong & Hu, Shengyong, 2020. "Development of a novel composite inhibitor modified with proanthocyanidins and mixed with ammonium polyphosphate," Energy, Elsevier, vol. 213(C).
    2. Guo, Shengli & Yan, Zhuo & Yuan, Shujie & Weile Geng,, 2021. "Inhibitory effect and mechanism of l-ascorbic acid combined with tea polyphenols on coal spontaneous combustion," Energy, Elsevier, vol. 229(C).
    3. Sun, Lulu & Zhan, Mingyu & Zhang, Chen & Shi, Quanlin & Huang, Qiming & Wang, Wenjie, 2022. "Experimental study on prevention of spontaneous combustion of coal by ionic surfactant solution injection in coal seam," Energy, Elsevier, vol. 260(C).
    4. Li, Jinhu & Li, Zenghua & Yang, Yongliang & Duan, Yujian & Xu, Jun & Gao, Ruiting, 2019. "Examination of CO, CO2 and active sites formation during isothermal pyrolysis of coal at low temperatures," Energy, Elsevier, vol. 185(C), pages 28-38.
    5. Lü, Hui-Fei & Deng, Jun & Li, Da-Jiang & Xu, Fan & Xiao, Yang & Shu, Chi-Min, 2021. "Effect of oxidation temperature and oxygen concentration on macro characteristics of pre-oxidised coal spontaneous combustion process," Energy, Elsevier, vol. 227(C).
    6. Wang, Hui & Xie, Jingna & Xie, Jun & Jiang, Hehe & Wen, Yongzan & Huang, Wanpeng & Wang, Gang & Jiang, Bingyou & Zhang, Chao, 2022. "Effect of critical micelle concentration of imidazole ionic liquids in aqueous solutions on the wettability of anthracite," Energy, Elsevier, vol. 239(PB).
    7. Yutao, Zhang & Yuanbo, Zhang & Yaqing, Li & Xueqiang, Shi & Yujie, Zhang, 2021. "Heat effects and kinetics of coal spontaneous combustion at various oxygen contents," Energy, Elsevier, vol. 234(C).
    8. Bai, Zujin & Deng, Jun & Wang, Caiping & Hou, Yanan & Zhang, Yanni & Kang, Furu & Ramakrishna, Seeram, 2023. "Study on the mechanism of lignite oxidation inhibition by antioxidant resveratrol," Energy, Elsevier, vol. 273(C).
    9. Shi, Quanlin & Qin, Botao & Hao, Yinghao & Li, Hongbiao, 2022. "Experimental investigation of the flow and extinguishment characteristics of gel-stabilized foam used to control coal fire," Energy, Elsevier, vol. 247(C).
    10. Guo, Junfei & Liu, Zhan & Du, Zhao & Yu, Jiabang & Yang, Xiaohu & Yan, Jinyue, 2021. "Effect of fin-metal foam structure on thermal energy storage: An experimental study," Renewable Energy, Elsevier, vol. 172(C), pages 57-70.
    11. Yan, Hongwei & Nie, Baisheng & Kong, Fanbei & Liu, Yuze & Liu, Peijun & Wang, Yongjing & Chen, Zongyu & Yin, Feifei & Gong, Jie & Lin, Shuangshuang & Wang, Xiaotong & Hou, Yanan, 2023. "Experimental investigation of coal particle size on the kinetic properties of coal oxidation and spontaneous combustion limit parameters," Energy, Elsevier, vol. 270(C).
    12. Wang, Feiran & Tan, Bo & Gao, Liyang & Huang, Jiliang & Guo, Meiyan & Wang, Haiyan & Fang, Xiyang & Fu, Shuhui & Li, Tianze, 2024. "Research on the mechanism of coal adsorption of CO2 hindering oxygen," Energy, Elsevier, vol. 296(C).
    13. Yang Guo & Liqun Peng & Jinping Tian & Denise L. Mauzerall, 2023. "Deploying green hydrogen to decarbonize China’s coal chemical sector," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Wang, Qiang & Song, Xiaoxin, 2021. "How UK farewell to coal – Insight from multi-regional input-output and logarithmic mean divisia index analysis," Energy, Elsevier, vol. 229(C).
    15. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    16. He, Yongjun & Deng, Jun & Yi, Xin & Xiao, Yang & Deng, Yin & Chen, Weile, 2023. "Effect of rare-earth-containing inhibitors on the low-temperature oxidation characteristics and thermodynamic properties of coal," Energy, Elsevier, vol. 281(C).
    17. Xinyi Huang & Xue Chen & Yunzhi Guo & Hanxi Wang, 2023. "Study on Utilization of Biochar Prepared from Crop Straw with Enhanced Carbon Sink Function in Northeast China," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    18. Lanjun Zhang & Yujia Han & Dexin Xu & Qin Jiang & Haihui Xin & Chenhui Fu & Wenjing He, 2022. "Study on the Reaction Path of -CH 3 and -CHO Functional Groups during Coal Spontaneous Combustion: Quantum Chemistry and Experimental Research," Energies, MDPI, vol. 15(13), pages 1-16, July.
    19. Yu, Haiquan & Zhou, Jianxin & Si, Fengqi & Nord, Lars O., 2022. "Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants," Energy, Elsevier, vol. 244(PA).
    20. Cerciello, Francesca & Coppola, Antonio & Lacovig, Paolo & Senneca, Osvalda & Salatino, Piero, 2021. "Characterization of surface-oxides on char under periodically changing oxidation/desorption conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:231:y:2021:i:c:s0360544221013414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.