IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v82y2016i2d10.1007_s11069-016-2224-1.html
   My bibliography  Save this article

Controlled-release inhibitor for preventing the spontaneous combustion of coal

Author

Listed:
  • Xuyao Qi

    (China University of Mining and Technology
    China University of Mining and Technology)

  • Cunxiang Wei

    (China University of Mining and Technology
    China University of Mining and Technology)

  • Qizhong Li

    (China University of Mining and Technology
    China University of Mining and Technology)

  • Libin Zhang

    (China University of Mining and Technology
    China University of Mining and Technology)

Abstract

The existing coal self-heating inhibitors usually have the shortcomings of short effective time and low inhibition effect. This study proposed a kind of controlled-release inhibitor and analyzed their differences in inhibition effects compared with existing inhibitors on coal self-heating. The controlled-release inhibitor is made from the synthesis of halogen inhibitors, catechin, copolymer, solvent and surfactant. The controlled-release inhibitor will not break down quickly until coal temperature reaches a value about 70 °C and can continually inhibit the process of coal self-heating after a longer time. The crossing point temperature, propensity to spontaneous combustion and CO generation of coal samples processed by different inhibition methods were tested separately based on an oxidation dynamic method. The results show that the controlled-release inhibitor can inhibit the coal self-heating more effectively for a longer time than existing halogen inhibitors. This study provides a new method for more efficient prevention of coal spontaneous combustion.

Suggested Citation

  • Xuyao Qi & Cunxiang Wei & Qizhong Li & Libin Zhang, 2016. "Controlled-release inhibitor for preventing the spontaneous combustion of coal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 891-901, June.
  • Handle: RePEc:spr:nathaz:v:82:y:2016:i:2:d:10.1007_s11069-016-2224-1
    DOI: 10.1007/s11069-016-2224-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2224-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2224-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jun Deng & Yang Xiao & Junhui Lu & Hu Wen & Yongfei Jin, 2015. "Application of composite fly ash gel to extinguish outcrop coal fires in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 881-898, November.
    2. Qiang Zeng & Tashpolat Tiyip & Manfred Wuttke & Wei-ming Guan, 2015. "Modeling of the equivalent permeability for an underground coal fire zone, Xinjiang region, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 957-971, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue, Di & Hu, Xiangming & Cheng, Weimin & Yu, Xiaoxiao & Wu, Mingyue & Zhao, Yanyun & Lu, Yi & Pan, Rongkun & Niu, Huiyong & Hu, Shengyong, 2020. "Development of a novel composite inhibitor modified with proanthocyanidins and mixed with ammonium polyphosphate," Energy, Elsevier, vol. 213(C).
    2. Chaoyu Hao & Yanling Chen & Jiren Wang & Cunbao Deng & Guang Xu & Fengwei Dai & Rui Si & Hongfei Wang & Haoyu Wang, 2018. "Study on the Effect of Iron-Based Deoxidizing Inhibitors for Coal Spontaneous Combustion Prevention," Energies, MDPI, vol. 11(4), pages 1-10, March.
    3. Bai, Zujin & Deng, Jun & Wang, Caiping & Hou, Yanan & Zhang, Yanni & Kang, Furu & Ramakrishna, Seeram, 2023. "Study on the mechanism of lignite oxidation inhibition by antioxidant resveratrol," Energy, Elsevier, vol. 273(C).
    4. Lü, Hui-Fei & Deng, Jun & Li, Da-Jiang & Xu, Fan & Xiao, Yang & Shu, Chi-Min, 2021. "Effect of oxidation temperature and oxygen concentration on macro characteristics of pre-oxidised coal spontaneous combustion process," Energy, Elsevier, vol. 227(C).
    5. Lanjun Zhang & Yujia Han & Dexin Xu & Qin Jiang & Haihui Xin & Chenhui Fu & Wenjing He, 2022. "Study on the Reaction Path of -CH 3 and -CHO Functional Groups during Coal Spontaneous Combustion: Quantum Chemistry and Experimental Research," Energies, MDPI, vol. 15(13), pages 1-16, July.
    6. Lv, Hongpeng & Li, Bei & Deng, Jun & Ye, Lili & Gao, Wei & Shu, Chi-Min & Bi, Mingshu, 2021. "A novel methodology for evaluating the inhibitory effect of chloride salts on the ignition risk of coal spontaneous combustion," Energy, Elsevier, vol. 231(C).
    7. Sun, Lulu & Zhan, Mingyu & Zhang, Chen & Shi, Quanlin & Huang, Qiming & Wang, Wenjie, 2022. "Experimental study on prevention of spontaneous combustion of coal by ionic surfactant solution injection in coal seam," Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qu, Baolin & Zhu, Hongqing & Tian, Rui & Hu, Lintao & Wang, Jingxin & Liao, Qi & Gao, Rongxiang & Wang, Haoran, 2023. "Investigation of the impact of pyrite content on the terahertz dielectric response of coals and rapid recognition with kernel-SVM," Energy, Elsevier, vol. 285(C).
    2. Zhang, Xun & Lu, Bing & Qiao, Ling & Ding, Cong, 2023. "Study on the kinetics of chemical structure reaction in coal catalyzed by OH free radicals," Energy, Elsevier, vol. 285(C).
    3. Yu Liu & Bo Li & Chuanping Wu & Baohui Chen & Tejun Zhou, 2021. "Risk warning technology for the whole process of overhead transmission line trip caused by wildfire," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 195-212, May.
    4. Shi, Quanlin & Long, Lihua & Sun, Yongjiang & Zhao, Shuang & Pang, Yuxuan & Xia, Cuiping, 2024. "Formation mechanism and the extinguishment performance of gel-stabilized foam for inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 303(C).
    5. Xue, Di & Hu, Xiangming & Cheng, Weimin & Yu, Xiaoxiao & Wu, Mingyue & Zhao, Yanyun & Lu, Yi & Pan, Rongkun & Niu, Huiyong & Hu, Shengyong, 2020. "Development of a novel composite inhibitor modified with proanthocyanidins and mixed with ammonium polyphosphate," Energy, Elsevier, vol. 213(C).
    6. Shuping Pan & Jun Li & Hongping Gong & Zhanheng Zhu & Shunan Xu & Caiping Jiang & Wenxiang Cai, 2023. "Resource Disposal and Products of Fly Ash from Domestic Waste Incineration in Zhejiang Province, China: Migration and Change of Hazardous Heavy Metals," Sustainability, MDPI, vol. 16(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:82:y:2016:i:2:d:10.1007_s11069-016-2224-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.