IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v6y2014i8p4706-4722d38566.html
   My bibliography  Save this article

Experimental Analysis of Natural Gravel Covering as Cool Roofing and Cool Pavement

Author

Listed:
  • Anna Laura Pisello

    (CIRIAF (Interuniversity Research Center on Pollution and Environment "Mauro Felli"), University of Perugia, Via G. Duranti 63, Perugia 06125, Italy)

  • Gloria Pignatta

    (CIRIAF (Interuniversity Research Center on Pollution and Environment "Mauro Felli"), University of Perugia, Via G. Duranti 63, Perugia 06125, Italy)

  • Veronica Lucia Castaldo

    (CIRIAF (Interuniversity Research Center on Pollution and Environment "Mauro Felli"), University of Perugia, Via G. Duranti 63, Perugia 06125, Italy)

  • Franco Cotana

    (CIRIAF (Interuniversity Research Center on Pollution and Environment "Mauro Felli"), University of Perugia, Via G. Duranti 63, Perugia 06125, Italy)

Abstract

Passive solutions for building energy efficiency represent an interesting research focus nowadays. In particular, natural materials are widely investigated for their potential intrinsic high thermal energy and environmental performance. In this view, natural stones represent a promising solution as building envelope covering and urban pavement. This paper concerns the experimental characterization of several low-cost and local gravel coverings for roofs and urban paving, properly selected for their natural high albedo characteristics. To this aim, the in-field albedo of gravel samples is measured with varying grain size. These in-field measurements are compared to in-lab measurements of solar reflectance and thermal emissivity. The analysis shows a significant variation of the albedo with varying grain size. Both in-lab and in-field measurements agree that the stones with the finest grain size, i.e. , fine sand, have the best optic-thermal performance in terms of solar reflectance (62%). This feature results in the reduction of the surface temperature when exposed to solar radiation. Moreover, a natural mixed stone is compared to the high reflectance stone, demonstrating that the chosen stone presents an intrinsic “cool” behavior. Therefore, this natural, low-cost, durable and sustainable material could be successfully considered as a natural cool roof or cool paving solution.

Suggested Citation

  • Anna Laura Pisello & Gloria Pignatta & Veronica Lucia Castaldo & Franco Cotana, 2014. "Experimental Analysis of Natural Gravel Covering as Cool Roofing and Cool Pavement," Sustainability, MDPI, vol. 6(8), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:6:y:2014:i:8:p:4706-4722:d:38566
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/6/8/4706/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/6/8/4706/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Omer, Abdeen Mustafa, 2008. "Renewable building energy systems and passive human comfort solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1562-1587, August.
    2. Chidiac, S.E. & Catania, E.J.C. & Morofsky, E. & Foo, S., 2011. "Effectiveness of single and multiple energy retrofit measures on the energy consumption of office buildings," Energy, Elsevier, vol. 36(8), pages 5037-5052.
    3. Anna Laura Pisello & Federico Rossi & Franco Cotana, 2014. "Summer and Winter Effect of Innovative Cool Roof Tiles on the Dynamic Thermal Behavior of Buildings," Energies, MDPI, vol. 7(4), pages 1-19, April.
    4. Omer, Abdeen Mustafa, 2008. "Energy, environment and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2265-2300, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jihui Yuan & Kazuo Emura & Craig Farnham, 2016. "Highly Reflective Roofing Sheets Installed on a School Building to Mitigate the Urban Heat Island Effect in Osaka," Sustainability, MDPI, vol. 8(6), pages 1-10, May.
    2. Anna Laura Pisello & Maria Saliari & Konstantina Vasilakopoulou & Shamila Hadad & Mattheos Santamouris, 2018. "Facing the urban overheating: Recent developments. Mitigation potential and sensitivity of the main technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(4), July.
    3. Ferdinando Salata & Iacopo Golasi & Emanuele De Lieto Vollaro & Fabio Bisegna & Fabio Nardecchia & Massimo Coppi & Franco Gugliermetti & Andrea De Lieto Vollaro, 2015. "Evaluation of Different Urban Microclimate Mitigation Strategies through a PMV Analysis," Sustainability, MDPI, vol. 7(7), pages 1-19, July.
    4. Iacopo Golasi & Ferdinando Salata & Emanuele De Lieto Vollaro & Massimo Coppi & Andrea De Lieto Vollaro, 2016. "Thermal Perception in the Mediterranean Area: Comparing the Mediterranean Outdoor Comfort Index (MOCI) to Other Outdoor Thermal Comfort Indices," Energies, MDPI, vol. 9(7), pages 1-16, July.
    5. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.
    6. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    7. Majed Abuseif & Zhonghua Gou, 2018. "A Review of Roofing Methods: Construction Features, Heat Reduction, Payback Period and Climatic Responsiveness," Energies, MDPI, vol. 11(11), pages 1-22, November.
    8. Nicole Tassicker & Payam Rahnamayiezekavat & Monty Sutrisna, 2016. "An Insight into the Commercial Viability of Green Roofs in Australia," Sustainability, MDPI, vol. 8(7), pages 1-25, June.
    9. Manuela Neri & Mariagrazia Pilotelli & Marco Traversi & Elisa Levi & Edoardo Alessio Piana & Mariasole Bannó & Eva Cuerva & Pablo Pujadas & Alfredo Guardo, 2021. "Conversion of End-of-Life Household Materials into Building Insulating Low-Cost Solutions for the Development of Vulnerable Contexts: Review and Outlook towards a Circular and Sustainable Economy," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    10. Sushobhan Sen & Jeffery Roesler & Benjamin Ruddell & Ariane Middel, 2019. "Cool Pavement Strategies for Urban Heat Island Mitigation in Suburban Phoenix, Arizona," Sustainability, MDPI, vol. 11(16), pages 1-21, August.
    11. Sharifi, Ayyoob & Yamagata, Yoshiki, 2016. "Principles and criteria for assessing urban energy resilience: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1654-1677.
    12. Miguel Ángel Sanjuán & Ángel Morales & Aniceto Zaragoza, 2021. "Effect of Precast Concrete Pavement Albedo on the Climate Change Mitigation in Spain," Sustainability, MDPI, vol. 13(20), pages 1-13, October.
    13. Sharifi, Ayyoob & Yamagata, Yoshiki, 2015. "Roof ponds as passive heating and cooling systems: A systematic review," Applied Energy, Elsevier, vol. 160(C), pages 336-357.
    14. Chiatti, Chiara & Fabiani, Claudia & Cotana, Franco & Pisello, Anna Laura, 2021. "Exploring the potential of photoluminescence for urban passive cooling and lighting applications: A new approach towards materials’ optimization," Energy, Elsevier, vol. 231(C).
    15. Paul Eduardo Vásquez-Álvarez & Carlos Flores-Vázquez & Juan-Carlos Cobos-Torres & Sandra Lucía Cobos-Mora, 2022. "Urban Heat Island Mitigation through Planned Simulation," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    16. Habibi, Shahryar & Obonyo, Esther Adhiambo & Memari, Ali M., 2020. "Design and development of energy efficient re-roofing solutions," Renewable Energy, Elsevier, vol. 151(C), pages 1209-1219.
    17. Fabiani, Claudia & Chiatti, Chiara & Pisello, Anna Laura, 2021. "Development of photoluminescent composites for energy efficiency in smart outdoor lighting applications: An experimental and numerical investigation," Renewable Energy, Elsevier, vol. 172(C), pages 1-15.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manzano-Agugliaro, Francisco & Montoya, Francisco G. & Sabio-Ortega, Andrés & García-Cruz, Amós, 2015. "Review of bioclimatic architecture strategies for achieving thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 736-755.
    2. Aitana Sáez-de-Guinoa & David Zambrana-Vasquez & Víctor Fernández & Carmen Bartolomé, 2022. "Circular Economy in the European Construction Sector: A Review of Strategies for Implementation in Building Renovation," Energies, MDPI, vol. 15(13), pages 1-27, June.
    3. Faezeh Bagheri Moghaddam & Josep Maria Fort Mir & Alia Besné Yanguas & Isidro Navarro Delgado & Ernest Redondo Dominguez, 2020. "Building Orientation in Green Facade Performance and Its Positive Effects on Urban Landscape Case Study: An Urban Block in Barcelona," Sustainability, MDPI, vol. 12(21), pages 1-17, November.
    4. Martos, A. & Pacheco-Torres, R. & Ordóñez, J. & Jadraque-Gago, E., 2016. "Towards successful environmental performance of sustainable cities: Intervening sectors. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 479-495.
    5. Pacheco, R. & Ordóñez, J. & Martínez, G., 2012. "Energy efficient design of building: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3559-3573.
    6. Ciulla, G. & D'Amico, A. & Lo Brano, V. & Traverso, M., 2019. "Application of optimized artificial intelligence algorithm to evaluate the heating energy demand of non-residential buildings at European level," Energy, Elsevier, vol. 176(C), pages 380-391.
    7. Mohammed A. Al-Ghamdi & Khalid S. Al-Gahtani, 2022. "Integrated Value Engineering and Life Cycle Cost Modeling for HVAC System Selection," Sustainability, MDPI, vol. 14(4), pages 1-30, February.
    8. Jeonghwa Cha & Kyungbo Park & Hangook Kim & Jongyi Hong, 2023. "Crisis Index Prediction Based on Momentum Theory and Earnings Downside Risk Theory: Focusing on South Korea’s Energy Industry," Energies, MDPI, vol. 16(5), pages 1-20, February.
    9. Frankie Fanjie Zeng & Jiajun Feng & Yuanzhi Zhang & Jin Yeu Tsou & Tengfei Xue & Yu Li & Rita Yi Man Li, 2021. "Comparative Study of Factors Contributing to Land Surface Temperature in High-Density Built Environments in Megacities Using Satellite Imagery," Sustainability, MDPI, vol. 13(24), pages 1-14, December.
    10. Tang, Rui & Li, Hangxin & Wang, Shengwei, 2019. "A game theory-based decentralized control strategy for power demand management of building cluster using thermal mass and energy storage," Applied Energy, Elsevier, vol. 242(C), pages 809-820.
    11. Cheng-Yih Hong & Hsiu-Ching Chang, 2019. "Comparing the Impact of Wind Power and Solar Power Investment on Industrial Development: Application of Dynamic Energy Industry-related Models," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 38-44.
    12. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Optimization design of BCHP system to maximize to save energy and reduce environmental impact," Energy, Elsevier, vol. 35(8), pages 3388-3398.
    13. Anna Barwińska Małajowicz & Miroslava Knapková & Krzysztof Szczotka & Miriam Martinkovičová & Radosław Pyrek, 2022. "Energy Efficiency Policies in Poland and Slovakia in the Context of Individual Well-Being," Energies, MDPI, vol. 16(1), pages 1-29, December.
    14. Wang, Chengchao & Yang, Yusheng & Zhang, Yaoqi, 2012. "Rural household livelihood change, fuelwood substitution, and hilly ecosystem restoration: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2475-2482.
    15. Deng, Cheng-gang & Chen, Fei, 2021. "Model verification and photo-thermal conversion assessment of a novel facade embedded compound parabolic concentrator," Energy, Elsevier, vol. 220(C).
    16. Meng, Xiangmei & de Jong, Wiebren & Kudra, Tadeusz, 2016. "A state-of-the-art review of pulse combustion: Principles, modeling, applications and R&D issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 73-114.
    17. Deng, S. & Wang, R.Z. & Dai, Y.J., 2014. "How to evaluate performance of net zero energy building – A literature research," Energy, Elsevier, vol. 71(C), pages 1-16.
    18. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    19. Baležentis, Alvydas & Baležentis, Tomas & Streimikiene, Dalia, 2011. "The energy intensity in Lithuania during 1995–2009: A LMDI approach," Energy Policy, Elsevier, vol. 39(11), pages 7322-7334.
    20. Alrubaih, M.S. & Zain, M.F.M. & Alghoul, M.A. & Ibrahim, N.L.N. & Shameri, M.A. & Elayeb, Omkalthum, 2013. "Research and development on aspects of daylighting fundamentals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 494-505.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:6:y:2014:i:8:p:4706-4722:d:38566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.