IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v85y2008i1p12-25.html
   My bibliography  Save this article

Changes in year-round air temperature and annual energy consumption in office building areas by urban heat-island countermeasures and energy-saving measures

Author

Listed:
  • Ihara, Tomohiko
  • Kikegawa, Yukihiro
  • Asahi, Kazutake
  • Genchi, Yutaka
  • Kondo, Hiroaki

Abstract

This paper describes the effects of the installation of various countermeasures against urban heat-island (UHI) and energy-saving measures on UHI and global warming. A UHI and energy-consumption simulation model was developed by combining the one-dimensional meteorological canopy and building energy use models; further, the proposed model was expanded to evaluate the year-round air temperature and annual energy consumption. The simulation results showed that the humidification and albedo increase at building-wall surfaces reduced the total number of hours for which the air temperature was more than 30 °C during the daytime by more than 60 (h) per year. The UHI countermeasures reduced the annual energy-consumption despite causing a small increase during the winter period. However, they may result in certain unfavorable conditions for pedestrians. Energy-saving measures, on the other hand, reduce the total number of hours for which the air temperature is more than 30 °C by only a few hours per year. Thus, we demonstrate the effectiveness of the UHI countermeasures and measures against global warming by extending the calculation period from summer to an entire year.

Suggested Citation

  • Ihara, Tomohiko & Kikegawa, Yukihiro & Asahi, Kazutake & Genchi, Yutaka & Kondo, Hiroaki, 2008. "Changes in year-round air temperature and annual energy consumption in office building areas by urban heat-island countermeasures and energy-saving measures," Applied Energy, Elsevier, vol. 85(1), pages 12-25, January.
  • Handle: RePEc:eee:appene:v:85:y:2008:i:1:p:12-25
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(07)00088-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kikegawa, Yukihiro & Genchi, Yutaka & Kondo, Hiroaki & Hanaki, Keisuke, 2006. "Impacts of city-block-scale countermeasures against urban heat-island phenomena upon a building's energy-consumption for air-conditioning," Applied Energy, Elsevier, vol. 83(6), pages 649-668, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angeles Campos-Osorio & Néstor Santillán-Soto & O. Rafael García-Cueto & Alejandro A. Lambert-Arista & Gonzalo Bojórquez-Morales, 2020. "Energy and Environmental Comparison between a Concrete Wall with and without a Living Green Wall: A Case Study in Mexicali, Mexico," Sustainability, MDPI, vol. 12(13), pages 1-10, June.
    2. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    3. Hongyu Du & Fengqi Zhou & Chunlan Li & Wenbo Cai & Hong Jiang & Yongli Cai, 2020. "Analysis of the Impact of Land Use on Spatiotemporal Patterns of Surface Urban Heat Island in Rapid Urbanization, a Case Study of Shanghai, China," Sustainability, MDPI, vol. 12(3), pages 1-17, February.
    4. Jim, C.Y., 2014. "Air-conditioning energy consumption due to green roofs with different building thermal insulation," Applied Energy, Elsevier, vol. 128(C), pages 49-59.
    5. Ascione, Fabrizio & Bianco, Nicola & de’ Rossi, Filippo & Turni, Gianluca & Vanoli, Giuseppe Peter, 2013. "Green roofs in European climates. Are effective solutions for the energy savings in air-conditioning?," Applied Energy, Elsevier, vol. 104(C), pages 845-859.
    6. Duan, Shuangping & Luo, Zhiwen & Yang, Xinyan & Li, Yuguo, 2019. "The impact of building operations on urban heat/cool islands under urban densification: A comparison between naturally-ventilated and air-conditioned buildings," Applied Energy, Elsevier, vol. 235(C), pages 129-138.
    7. Frayssinet, Loïc & Merlier, Lucie & Kuznik, Frédéric & Hubert, Jean-Luc & Milliez, Maya & Roux, Jean-Jacques, 2018. "Modeling the heating and cooling energy demand of urban buildings at city scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2318-2327.
    8. Dong-Hyeon Kim & Byeong-Il Ahn & Eui-Gyeong Kim, 2016. "Metropolitan Residents’ Preferences and Willingness to Pay for a Life Zone Forest for Mitigating Heat Island Effects during Summer Season in Korea," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    9. Fabiani, C. & Pisello, A.L. & Bou-Zeid, E. & Yang, J. & Cotana, F., 2019. "Adaptive measures for mitigating urban heat islands: The potential of thermochromic materials to control roofing energy balance," Applied Energy, Elsevier, vol. 247(C), pages 155-170.
    10. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    11. Gago, E.J. & Roldan, J. & Pacheco-Torres, R. & Ordóñez, J., 2013. "The city and urban heat islands: A review of strategies to mitigate adverse effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 749-758.
    12. Yingbao Yang & Xize Zhang & Xi Lu & Jia Hu & Xin Pan & Qin Zhu & Weizhong Su, 2017. "Effects of Building Design Elements on Residential Thermal Environment," Sustainability, MDPI, vol. 10(1), pages 1-15, December.
    13. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    14. Ouldboukhitine, Salah-Eddine & Belarbi, Rafik & Sailor, David J., 2014. "Experimental and numerical investigation of urban street canyons to evaluate the impact of green roof inside and outside buildings," Applied Energy, Elsevier, vol. 114(C), pages 273-282.
    15. Jamei, Elmira & Rajagopalan, Priyadarsini & Seyedmahmoudian, Mohammadmehdi & Jamei, Yashar, 2016. "Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1002-1017.
    16. Sharifi, Ayyoob & Yamagata, Yoshiki, 2016. "Principles and criteria for assessing urban energy resilience: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1654-1677.
    17. Hussain H. Al-Kayiem & Kelly Koh & Tri W. B. Riyadi & Marwan Effendy, 2020. "A Comparative Review on Greenery Ecosystems and Their Impacts on Sustainability of Building Environment," Sustainability, MDPI, vol. 12(20), pages 1-25, October.
    18. He, Jiang & Hoyano, Akira & Asawa, Takashi, 2009. "A numerical simulation tool for predicting the impact of outdoor thermal environment on building energy performance," Applied Energy, Elsevier, vol. 86(9), pages 1596-1605, September.
    19. Mingran Mao & Chunzao Feng & Junxian Pei & Huidong Liu & Haifeng Jiang, 2023. "A Triple-Layer Membrane with Hybrid Evaporation and Radiation for Building Cooling," Energies, MDPI, vol. 16(6), pages 1-11, March.
    20. Stéphane Hallegatte & Fanny Henriet & Jan Corfee-Morlot, 2011. "The economics of climate change impacts and policy benefits at city scale: a conceptual framework," Climatic Change, Springer, vol. 104(1), pages 51-87, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:85:y:2008:i:1:p:12-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.