Outstanding performance of direct urea/hydrogen peroxide fuel cell based on precious metal-free catalyst electrodes
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.120584
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Song, Xingjuan & Zhang, Dongming, 2014. "Bimetallic Ag–Ni/C particles as cathode catalyst in AFCs (alkaline fuel cells)," Energy, Elsevier, vol. 70(C), pages 223-230.
- Alami, Abdul Hai & Abdelkareem, Mohammad Ali & Faraj, Mohammed & Aokal, Kamilia & Al Safarini, Nada, 2020. "Titanium dioxide-coated nickel foam photoelectrodes for direct urea fuel cell applications," Energy, Elsevier, vol. 208(C).
- Siegel, C., 2008. "Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells," Energy, Elsevier, vol. 33(9), pages 1331-1352.
- Silveira, Gustavo & de Aquino Neto, Sidney & Schneedorf, José Maurício, 2020. "Development, characterization and application of a low-cost single chamber microbial fuel cell based on hydraulic couplers," Energy, Elsevier, vol. 208(C).
- Yang, Chii-Rong & Lu, Chang-Wei & Fu, Pin-Chi & Cheng, Chia & Chiou, Yuang-Cherng & Lee, Rong-Tsong & Tseng, Shih-Feng, 2020. "Performance evaluation of μDMFCs based on porous-silicon electrodes and methanol modification," Energy, Elsevier, vol. 192(C).
- Zinadini, S. & Zinatizadeh, A.A. & Rahimi, M. & Vatanpour, V. & Rahimi, Z., 2017. "High power generation and COD removal in a microbial fuel cell operated by a novel sulfonated PES/PES blend proton exchange membrane," Energy, Elsevier, vol. 125(C), pages 427-438.
- Braz, B.A. & Oliveira, V.B. & Pinto, A.M.F.R., 2020. "Optimization of a passive direct methanol fuel cell with different current collector materials," Energy, Elsevier, vol. 208(C).
- Diaz-Mendez, S.E. & Sierra-Grajeda, J.M.T. & Hernandez-Guerrero, A. & Rodriguez-Lelis, J.M., 2013. "Entropy generation as an environmental impact indicator and a sample application to freshwater ecosystems eutrophication," Energy, Elsevier, vol. 61(C), pages 234-239.
- Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
- Mohammed, Hanin & Al-Othman, Amani & Nancarrow, Paul & Tawalbeh, Muhammad & El Haj Assad, Mamdouh, 2019. "Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency," Energy, Elsevier, vol. 172(C), pages 207-219.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sayed, Enas Taha & Abdelkareem, Mohammad Ali & Bahaa, Ahmed & Eisa, Tasnim & Alawadhi, Hussain & Al-Asheh, Sameer & Chae, Kyu-Jung & Olabi, A.G., 2021. "Synthesis and performance evaluation of various metal chalcogenides as active anodes for direct urea fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Maria H. de Sá & Alexandra M. F. R. Pinto & Vânia B. Oliveira, 2022. "Passive Small Direct Alcohol Fuel Cells for Low-Power Portable Applications: Assessment Based on Innovative Increments since 2018," Energies, MDPI, vol. 15(10), pages 1-48, May.
- Mohamed, Hend Omar & Talas, Sawsan Abo & Sayed, Enas T. & Park, Sung-Gwan & Eisa, Tasnim & Abdelkareem, Mohammad Ali & Fadali, Olfat A. & Chae, Kyu-Jung & Castaño, Pedro, 2021. "Enhancing power generation in microbial fuel cell using tungsten carbide on reduced graphene oxide as an efficient anode catalyst material," Energy, Elsevier, vol. 229(C).
- Ong, Samuel & Al-Othman, Amani & Tawalbeh, Muhammad, 2023. "Emerging technologies in prognostics for fuel cells including direct hydrocarbon fuel cells," Energy, Elsevier, vol. 277(C).
- A. G. Olabi & Tabbi Wilberforce & Khaled Elsaid & Tareq Salameh & Enas Taha Sayed & Khaled Saleh Husain & Mohammad Ali Abdelkareem, 2021. "Selection Guidelines for Wind Energy Technologies," Energies, MDPI, vol. 14(11), pages 1-34, June.
- Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
- Barzegari, Mohammad M. & Dardel, Morteza & Alizadeh, Ebrahim & Ramiar, Abas, 2016. "Dynamic modeling and validation studies of dead-end cascade H2/O2 PEM fuel cell stack with integrated humidifier and separator," Applied Energy, Elsevier, vol. 177(C), pages 298-308.
- Salva, J. Antonio & Iranzo, Alfredo & Rosa, Felipe & Tapia, Elvira, 2016. "Validation of cell voltage and water content in a PEM (polymer electrolyte membrane) fuel cell model using neutron imaging for different operating conditions," Energy, Elsevier, vol. 101(C), pages 100-112.
- Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
- Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
- Ahmed M. Nassef & Ahmed Handam, 2022. "Parameter Estimation-Based Slime Mold Algorithm of Photocatalytic Methane Reforming Process for Hydrogen Production," Sustainability, MDPI, vol. 14(5), pages 1-12, March.
- K. Arunprasath & S. Bathrinath & R. K. A. Bhalaji & Koppiahraj Karuppiah & Anish Nair, 2023. "An integrated approach to modelling of barriers in implementation of cellular manufacturing systems in production industries," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 1370-1378, August.
- Venkatesan, Suriya & Mitzel, Jens & Wegner, Karsten & Costa, Remi & Gazdzicki, Pawel & Friedrich, Kaspar Andreas, 2022. "Nanomaterials and films for polymer electrolyte membrane fuel cells and solid oxide cells by flame spray pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Wang, Chenfang & Li, Qingshan & Wang, Chunmei & Zhang, Yangjun & Zhuge, Weilin, 2021. "Thermodynamic analysis of a hydrogen fuel cell waste heat recovery system based on a zeotropic organic Rankine cycle," Energy, Elsevier, vol. 232(C).
- Jung, Chi-Young & Yi, Jae-You & Yi, Sung-Chul, 2014. "On the role of the silica-containing catalyst layer for proton exchange membrane fuel cells," Energy, Elsevier, vol. 68(C), pages 794-800.
- Ismail, M.S. & Ingham, D.B. & Ma, L. & Hughes, K.J. & Pourkashanian, M., 2017. "Effects of catalyst agglomerate shape in polymer electrolyte fuel cells investigated by a multi-scale modelling framework," Energy, Elsevier, vol. 122(C), pages 420-430.
- Thowayeb H. Hassan & Abu Elnasr E. Sobaih & Amany E. Salem, 2021. "Factors Affecting the Rate of Fuel Consumption in Aircrafts," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
- Zhiming Zhang & Jun Zhang & Tong Zhang, 2022. "Endplate Design and Topology Optimization of Fuel Cell Stack Clamped with Bolts," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
- Tzelepis, Stefanos & Kavadias, Kosmas A. & Marnellos, George E. & Xydis, George, 2021. "A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
- Fang, Shuo & Song, Nan & Liu, Yuntao & Zhao, Chunhui & Wang, Ying, 2024. "Comprehensive energy conversion efficiency analysis of micro direct methanol fuel cell stack based on polarization theory," Energy, Elsevier, vol. 287(C).
More about this item
Keywords
Direct urea fuel cell; Urea electro-oxidation; H2O2 reduction; Nickel nanorods; Precious metal free; Prussian blue;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:228:y:2021:i:c:s0360544221008331. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.