IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v227y2021ics036054422100757x.html
   My bibliography  Save this article

Comparative comminution efficiencies of rotary, stirred and vibrating ball-mills for the production of ultrafine biomass powders

Author

Listed:
  • Rajaonarivony, Karine Rova
  • Mayer-Laigle, Claire
  • Piriou, Bruno
  • Rouau, Xavier

Abstract

Plant biomass as a substitute for fossil oil is one of the most promising pathways to reducing the environmental impact of human activities. Ultrafine comminution of plant materials can produce ultrafine powders suitable for direct use in advanced-technology applications as an engine, becoming a sustainable powdered biofuel. However, comminution is an extremely energy-intensive process, making it vital for industry to select the most efficient milling device for the biomass. Here, we comprehensively compared the efficiencies of three batch ball mills employable for ultra-fine comminution of plant materials. First, we led a ball motion study to estimate the predominant mechanical stresses generated by each device. Two biomasses with contrasted physical properties were milled using three devices to achieve a target particle size of 20 μm. Milling times and process energy consumption were recorded, and the particle size distributions and specific surface areas of the ground powders were measured. The balls mills were then compared based on several indicators of energy efficiency, productivity and processing speed. The results show that the energy input is better utilized in mills that work by attrition or by combined impact and attrition.

Suggested Citation

  • Rajaonarivony, Karine Rova & Mayer-Laigle, Claire & Piriou, Bruno & Rouau, Xavier, 2021. "Comparative comminution efficiencies of rotary, stirred and vibrating ball-mills for the production of ultrafine biomass powders," Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:energy:v:227:y:2021:i:c:s036054422100757x
    DOI: 10.1016/j.energy.2021.120508
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422100757X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120508?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tymoszuk, Mateusz & Mroczek, Kazimierz & Kalisz, Sylwester & Kubiczek, Henryk, 2019. "An investigation of biomass grindability," Energy, Elsevier, vol. 183(C), pages 116-126.
    2. Williams, Orla & Newbolt, Gary & Eastwick, Carol & Kingman, Sam & Giddings, Donald & Lormor, Stephen & Lester, Edward, 2016. "Influence of mill type on densified biomass comminution," Applied Energy, Elsevier, vol. 182(C), pages 219-231.
    3. Büyüközkan, Gülçin & Karabulut, Yağmur & Mukul, Esin, 2018. "A novel renewable energy selection model for United Nations' sustainable development goals," Energy, Elsevier, vol. 165(PA), pages 290-302.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arvind Kumar & Rina Sahu & Sunil Kumar Tripathy, 2023. "Energy-Efficient Advanced Ultrafine Grinding of Particles Using Stirred Mills—A Review," Energies, MDPI, vol. 16(14), pages 1-37, July.
    2. Stover, Luke & Caillol, Christian & Piriou, Bruno & Mayer-Laigle, Claire & Rouau, Xavier & Vaïtilingom, Gilles, 2023. "A phenomenological description of biomass powder combustion in internal combustion engines," Energy, Elsevier, vol. 274(C).
    3. Weronika Kruszelnicka & Jakub Hlosta & Jan Diviš & Łukasz Gierz, 2021. "Study of the Relationships between Multi-Hole, Multi-Disc Mill Performance Parameters and Comminution Indicators," Sustainability, MDPI, vol. 13(15), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iribarren, Diego & Martín-Gamboa, Mario & Navas-Anguita, Zaira & García-Gusano, Diego & Dufour, Javier, 2020. "Influence of climate change externalities on the sustainability-oriented prioritisation of prospective energy scenarios," Energy, Elsevier, vol. 196(C).
    2. Chun-Yi Ho & Bi-Huei Tsai & Chiao-Shan Chen & Ming-Tsang Lu, 2021. "Exploring Green Marketing Orientations toward Sustainability the Hospitality Industry in the COVID-19 Pandemic," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    3. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Li, Xin & Wu, Xian & Gui, De & Hua, Yawen & Guo, Panfeng, 2021. "Power system planning based on CSP-CHP system to integrate variable renewable energy," Energy, Elsevier, vol. 232(C).
    5. Gigel Paraschiv & Georgiana Moiceanu & Gheorghe Voicu & Mihai Chitoiu & Petru Cardei & Mirela Nicoleta Dinca & Paula Tudor, 2021. "Optimization Issues of a Hammer Mill Working Process Using Statistical Modelling," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    6. Pronobis, Marek & Wejkowski, Robert & Kalisz, Sylwester & Ciukaj, Szymon, 2023. "Conversion of a pulverized coal boiler into a torrefied biomass boiler," Energy, Elsevier, vol. 262(PB).
    7. Ayyildiz, Ertugrul, 2022. "Fermatean fuzzy step-wise Weight Assessment Ratio Analysis (SWARA) and its application to prioritizing indicators to achieve sustainable development goal-7," Renewable Energy, Elsevier, vol. 193(C), pages 136-148.
    8. Bartosz Matyjewicz & Kacper Świechowski & Jacek A. Koziel & Andrzej Białowiec, 2020. "Proof-of-Concept of High-Pressure Torrefaction for Improvement of Pelletized Biomass Fuel Properties and Process Cost Reduction," Energies, MDPI, vol. 13(18), pages 1-27, September.
    9. Pulla Rose Havilah & Pankaj Kumar Sharma & Amit Kumar Sharma, 2021. "Characterization, thermal and kinetic analysis of Pinusroxburghii," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8872-8894, June.
    10. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    11. Tanui, J.K. & Kioni, P.N. & Mirre, T. & Nowitzki, M. & Karuri, N.W., 2020. "The influence of particle packing density on wood combustion in a fixed bed under oxy-fuel conditions," Energy, Elsevier, vol. 194(C).
    12. Mohammed Alghassab, 2023. "A Computational Case Study on Sustainable Energy Transition in the Kingdom of Saudi Arabia," Energies, MDPI, vol. 16(13), pages 1-18, July.
    13. Li, Weizhen & Guo, Weiwei & Bu, Wenjing & Jiang, Yang & Wang, Yan & Yang, Wenshen & Yin, Xiuli, 2020. "A non-liner constitutive model of three typical biomass material pelletization for capturing particle mechanical behaviors during the elasto-visco-plastic deformation stage," Renewable Energy, Elsevier, vol. 149(C), pages 1370-1385.
    14. Głód, Krzysztof & Lasek, Janusz A. & Supernok, Krzysztof & Pawłowski, Przemysław & Fryza, Rafał & Zuwała, Jarosław, 2023. "Torrefaction as a way to increase the waste energy potential," Energy, Elsevier, vol. 285(C).
    15. Stevovic, Ivan & Mirjanic, Dragoljub & Petrovic, Natasa, 2021. "Integration of solar energy by nature-inspired optimization in the context of circular economy," Energy, Elsevier, vol. 235(C).
    16. Yin, Chungen, 2020. "Development in biomass preparation for suspension firing towards higher biomass shares and better boiler performance and fuel rangeability," Energy, Elsevier, vol. 196(C).
    17. Krishankumar, Raghunathan & Pamucar, Dragan & Deveci, Muhammat & Aggarwal, Manish & Ravichandran, Kattur Soundarapandian, 2022. "Assessment of renewable energy sources for smart cities’ demand satisfaction using multi-hesitant fuzzy linguistic based choquet integral approach," Renewable Energy, Elsevier, vol. 189(C), pages 1428-1442.
    18. Gerrit Ralf Surup & Hamideh Kaffash & Yan Ma & Anna Trubetskaya & Johan Berg Pettersen & Merete Tangstad, 2022. "Life Cycle Based Climate Emissions of Charcoal Conditioning Routes for the Use in the Ferro-Alloy Production," Energies, MDPI, vol. 15(11), pages 1-28, May.
    19. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    20. Raquel Ibar-Alonso & Raquel Quiroga-García & Mar Arenas-Parra, 2022. "Opinion Mining of Green Energy Sentiment: A Russia-Ukraine Conflict Analysis," Mathematics, MDPI, vol. 10(14), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:227:y:2021:i:c:s036054422100757x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.