IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v225y2021ics0360544221005211.html
   My bibliography  Save this article

Energy management for a community-level integrated energy system with photovoltaic prosumers based on bargaining theory

Author

Listed:
  • Jiang, Aihua
  • Yuan, Huihong
  • Li, Delong

Abstract

The game theory is a powerful and helpful approach to deal with the complicated relationship between participants efficiently. The Nash bargaining theory, one of the branches of cooperative game, is particularly suitable for the conflict of interest among the participants with interactive characteristics. This study analyzes the economic interaction between the community energy manager and the photovoltaic prosumers from a cooperative perspective. An incentive mechanism based on Nash bargaining theory to encourage the prosumers to actively participate in energy management is developed. In the proposed bargaining-based and cooperative model, the community energy manager as an integrated energy provider, is willing to give some rewards to the prosumers to stimulate them to cooperate with itself (i.e., the community energy manager). A photovoltaic prosumer who may behave as an energy buyer or seller determines the exchanged energy through bargaining with the community energy manager to achieve utility maximization. In the proposed model, the prosumers and the community energy manager are cooperative and mutually beneficial rather than a master-slave relationship. This study also provides an analysis of the relationship between the Nash bargaining problem and the social welfare function, illustrating that solving the Nash bargaining problem can obtain a social optimum. Moreover, a distributed algorithm with higher reliability and fault tolerance compared with the central approach is designed to solve the Nash bargaining problem with minimum information so that the privacy of the photovoltaic prosumers can be protected. Numerical studies based on realistic data demonstrate that both the photovoltaic prosumers and the community energy manager can obtain more benefits from the Nash bargaining cooperative model compared with a Stackelberg game method.

Suggested Citation

  • Jiang, Aihua & Yuan, Huihong & Li, Delong, 2021. "Energy management for a community-level integrated energy system with photovoltaic prosumers based on bargaining theory," Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:energy:v:225:y:2021:i:c:s0360544221005211
    DOI: 10.1016/j.energy.2021.120272
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221005211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Garrote, Luis, 2019. "Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants," Applied Energy, Elsevier, vol. 256(C).
    2. Lu, Qing & Lü, Shuaikang & Leng, Yajun, 2019. "A Nash-Stackelberg game approach in regional energy market considering users’ integrated demand response," Energy, Elsevier, vol. 175(C), pages 456-470.
    3. Iria, José & Soares, Filipe & Matos, Manuel, 2019. "Optimal bidding strategy for an aggregator of prosumers in energy and secondary reserve markets," Applied Energy, Elsevier, vol. 238(C), pages 1361-1372.
    4. Wang, Yuwei & Tang, Liu & Yang, Yuanjuan & Sun, Wei & Zhao, Huiru, 2020. "A stochastic-robust coordinated optimization model for CCHP micro-grid considering multi-energy operation and power trading with electricity markets under uncertainties," Energy, Elsevier, vol. 198(C).
    5. Fan, Songli & Ai, Qian & Piao, Longjian, 2018. "Bargaining-based cooperative energy trading for distribution company and demand response," Applied Energy, Elsevier, vol. 226(C), pages 469-482.
    6. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing & Lao, Changshi, 2017. "Profit allocation analysis among the distributed energy network participants based on Game-theory," Energy, Elsevier, vol. 118(C), pages 783-794.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Zhilong & Xu, Wei & Yan, Yue & Sun, Mei, 2023. "How to realize the power demand side actively matching the supply side? ——A virtual real-time electricity prices optimization model based on credit mechanism," Applied Energy, Elsevier, vol. 343(C).
    2. Volpato, Gabriele & Carraro, Gianluca & Cont, Marco & Danieli, Piero & Rech, Sergio & Lazzaretto, Andrea, 2022. "General guidelines for the optimal economic aggregation of prosumers in energy communities," Energy, Elsevier, vol. 258(C).
    3. Wang, Xuejie & Li, Bingkang & Wang, Yuwei & Lu, Hao & Zhao, Huiru & Xue, Wanlei, 2022. "A bargaining game-based profit allocation method for the wind-hydrogen-storage combined system," Applied Energy, Elsevier, vol. 310(C).
    4. Zhu, Yilin & Xu, Yujie & Chen, Haisheng & Guo, Huan & Zhang, Hualiang & Zhou, Xuezhi & Shen, Haotian, 2023. "Optimal dispatch of a novel integrated energy system combined with multi-output organic Rankine cycle and hybrid energy storage," Applied Energy, Elsevier, vol. 343(C).
    5. Yang, Peiwen & Fang, Debin & Wang, Shuyi, 2022. "Optimal trading mechanism for prosumer-centric local energy markets considering deviation assessment," Applied Energy, Elsevier, vol. 325(C).
    6. Jin-Li Hu & Min-Yueh Chuang, 2023. "The Importance of Energy Prosumers for Affordable and Clean Energy Development: A Review of the Literature from the Viewpoints of Management and Policy," Energies, MDPI, vol. 16(17), pages 1-16, August.
    7. Duan, Pengfei & Zhao, Bingxu & Zhang, Xinghui & Fen, Mengdan, 2023. "A day-ahead optimal operation strategy for integrated energy systems in multi-public buildings based on cooperative game," Energy, Elsevier, vol. 275(C).
    8. Josh Eichman & Marc Torrecillas Castelló & Cristina Corchero, 2022. "Reviewing and Exploring the Qualitative Impacts That Different Market and Regulatory Measures Can Have on Encouraging Energy Communities Based on Their Organizational Structure," Energies, MDPI, vol. 15(6), pages 1-19, March.
    9. Yanfang Hou & Hui Tian, 2023. "Research on the Dynamic Characteristics of Photovoltaic Power Production and Sales Based on Game Theory," Sustainability, MDPI, vol. 15(19), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    2. Li, Jiamei & Ai, Qian & Yin, Shuangrui & Hao, Ran, 2022. "An aggregator-oriented hierarchical market mechanism for multi-type ancillary service provision based on the two-loop Stackelberg game," Applied Energy, Elsevier, vol. 323(C).
    3. Jing, Rui & Wang, Meng & Liang, Hao & Wang, Xiaonan & Li, Ning & Shah, Nilay & Zhao, Yingru, 2018. "Multi-objective optimization of a neighborhood-level urban energy network: Considering Game-theory inspired multi-benefit allocation constraints," Applied Energy, Elsevier, vol. 231(C), pages 534-548.
    4. Wang, Haiyang & Zhang, Chenghui & Li, Ke & Ma, Xin, 2021. "Game theory-based multi-agent capacity optimization for integrated energy systems with compressed air energy storage," Energy, Elsevier, vol. 221(C).
    5. Yuqing Wang & Min Zhang & Jindi Ao & Zhaozhen Wang & Houqi Dong & Ming Zeng, 2022. "Profit Allocation Strategy of Virtual Power Plant Based on Multi-Objective Optimization in Electricity Market," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    6. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    7. Zhai, Yijie & Ma, Xiaotian & Gao, Feng & Zhang, Tianzuo & Hong, Jinglan & Zhang, Xu & Yuan, Xueliang & Li, Xiangzhi, 2020. "Is energy the key to pursuing clean air and water at the city level? A case study of Jinan City, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Gao, Evelyn & Sowlati, Taraneh & Akhtari, Shaghaygh, 2019. "Profit allocation in collaborative bioenergy and biofuel supply chains," Energy, Elsevier, vol. 188(C).
    9. Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).
    10. Cédric Clastres & Olivier Rebenaque & Patrick Jochem, 2020. "Provision of Demand Response from the prosumers in multiple markets," Working Papers hal-03167446, HAL.
    11. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    12. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    13. Wang, Lu & Gu, Wei & Wu, Zhi & Qiu, Haifeng & Pan, Guangsheng, 2020. "Non-cooperative game-based multilateral contract transactions in power-heating integrated systems," Applied Energy, Elsevier, vol. 268(C).
    14. Chen, Yang & Park, Byungkwon & Kou, Xiao & Hu, Mengqi & Dong, Jin & Li, Fangxing & Amasyali, Kadir & Olama, Mohammed, 2020. "A comparison study on trading behavior and profit distribution in local energy transaction games," Applied Energy, Elsevier, vol. 280(C).
    15. Wang, Peng-Tao & Wei, Yi-Ming & Yang, Bo & Li, Jia-Quan & Kang, Jia-Ning & Liu, Lan-Cui & Yu, Bi-Ying & Hou, Yun-Bing & Zhang, Xian, 2020. "Carbon capture and storage in China’s power sector: Optimal planning under the 2 °C constraint," Applied Energy, Elsevier, vol. 263(C).
    16. Jun Liu & Jinchun Chen & Chao Wang & Zhang Chen & Xinglei Liu, 2020. "Market Trading Model of Urban Energy Internet Based on Tripartite Game Theory," Energies, MDPI, vol. 13(7), pages 1-24, April.
    17. Xiaofeng Liu & Qi Wang & Wenting Wang, 2019. "Evolutionary Analysis for Residential Consumer Participating in Demand Response Considering Irrational Behavior," Energies, MDPI, vol. 12(19), pages 1-19, September.
    18. Wang, Guotao & Liao, Qi & Wang, Chang & Liang, Yongtu & Zhang, Haoran, 2022. "Multiperiod optimal planning of biofuel refueling stations: A bi-level game-theoretic approach," Renewable Energy, Elsevier, vol. 200(C), pages 1152-1165.
    19. Sun, Bo & Li, Mingzhe & Wang, Fan & Xie, Jingdong, 2023. "An incentive mechanism to promote residential renewable energy consumption in China's electricity retail market: A two-level Stackelberg game approach," Energy, Elsevier, vol. 269(C).
    20. Fei Feng & Xin Du & Qiang Si & Hao Cai, 2022. "Hybrid Game Optimization of Microgrid Cluster (MC) Based on Service Provider (SP) and Tiered Carbon Price," Energies, MDPI, vol. 15(14), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:225:y:2021:i:c:s0360544221005211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.