IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipas0960148124016483.html
   My bibliography  Save this article

A stochastic optimization procedure to design the fair aggregation of energy users in a Renewable Energy Community

Author

Listed:
  • Volpato, Gabriele
  • Carraro, Gianluca
  • De Giovanni, Luigi
  • Dal Cin, Enrico
  • Danieli, Piero
  • Bregolin, Edoardo
  • Lazzaretto, Andrea

Abstract

Optimizing unit sizes and operation within a Renewable Energy Community (REC) can match intermittent renewable energy generation with variable user energy demands. These uncertain variables are often represented by pre-defined stochastic scenarios, without searching for the “best” scenarios and testing the optimization models with these scenarios. Moreover, little work both optimized RECs under uncertainty and distributed optimal life-cycle costs (investment and operation) among members. Thus, the objectives are: i) identifying the “best” set of stochastic scenarios of solar irradiance and user electricity demands and ii) assessing the accuracy of the “stochastic forecasts” of the total system costs and unit sizes, obtained by solving a stochastic programming model based on the “best” scenarios. The proposed novel procedure shifts the “present moment” back in time to split historical data into “past” and “future” periods used to identify the “best” scenarios and compare the “stochastic forecasts” with the utopic “perfect forecasts” based on the perfect knowledge of real data, respectively. The small errors between these forecasts in the optimal life-cycle costs (less than 2 %) and sizes (3–13 %) indicate good effectiveness of the suggested procedure. Also, the optimal life-cycle costs of “stochastic forecasts” are fairly distributed among users by applying the Shapley value mechanism.

Suggested Citation

  • Volpato, Gabriele & Carraro, Gianluca & De Giovanni, Luigi & Dal Cin, Enrico & Danieli, Piero & Bregolin, Edoardo & Lazzaretto, Andrea, 2024. "A stochastic optimization procedure to design the fair aggregation of energy users in a Renewable Energy Community," Renewable Energy, Elsevier, vol. 237(PA).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016483
    DOI: 10.1016/j.renene.2024.121580
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124016483
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121580?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.