IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v204y2020ics0360544220310409.html
   My bibliography  Save this article

A synergistic study of reaction kinetics and heat transfer with multi-component modelling approach for the pyrolysis of biomass waste

Author

Listed:
  • Siddiqi, Hammad
  • Kumari, Usha
  • Biswas, Subrata
  • Mishra, Asmita
  • Meikap, B.C.

Abstract

The present work correlates the heat transport phenomenon coupled with reaction kinetics occurring in the pyrolysis of the coconut shell biomass. The kinetics was modelled assuming an independent parallel reaction of three prominent constituents of biomass namely hemicellulose, cellulose and lignin. Based on the Arrhenius theory and three first order reactions, the kinetic parameters were determined. The activation energy was obtained as 145.20 kJ mol−1, 124.55 kJ mol−1 and 78.60 kJ mol−1 for hemicellulose, cellulose and lignin respectively at a heating rate 10 K/min. The corresponding pre-exponential factor ranges from 5.30х106 to 9.60х109 min−1. The kinetic parameters followed a linear relationship showing an energy compensation effect with its parameters 0.1020 mol kJ−1 min−1 and 7.7753 min−1. Further, these kinetic values for individual components along with other thermo-physical properties had been used to evaluate the transport properties of each. Subsequently, heat transfer map predicted the controlling mechanism with varying particle size for three constituents. Pyrolysis number showed the heat propagation was highest for hemicelluloses of the order 1010, which was further 100 times slower for cellulose and least for lignin. Also, particle size had a predominant effect on transfer properties with a critical size controlling the change of regime for different components.

Suggested Citation

  • Siddiqi, Hammad & Kumari, Usha & Biswas, Subrata & Mishra, Asmita & Meikap, B.C., 2020. "A synergistic study of reaction kinetics and heat transfer with multi-component modelling approach for the pyrolysis of biomass waste," Energy, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:energy:v:204:y:2020:i:c:s0360544220310409
    DOI: 10.1016/j.energy.2020.117933
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220310409
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117933?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tran, Khanh-Quang & Bach, Quang-Vu & Trinh, Thuat T. & Seisenbaeva, Gulaim, 2014. "Non-isothermal pyrolysis of torrefied stump – A comparative kinetic evaluation," Applied Energy, Elsevier, vol. 136(C), pages 759-766.
    2. Sharma, Abhishek & Pareek, Vishnu & Zhang, Dongke, 2015. "Biomass pyrolysis—A review of modelling, process parameters and catalytic studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1081-1096.
    3. Johansen, Joakim M. & Jensen, Peter A. & Glarborg, Peter & Mancini, Marco & Weber, Roman & Mitchell, Reginald E., 2016. "Extension of apparent devolatilization kinetics from thermally thin to thermally thick particles in zero dimensions for woody biomass," Energy, Elsevier, vol. 95(C), pages 279-290.
    4. Siddiqi, Hammad & Bal, Manisha & Kumari, Usha & Meikap, B.C., 2020. "In-depth physiochemical characterization and detailed thermo-kinetic study of biomass wastes to analyze its energy potential," Renewable Energy, Elsevier, vol. 148(C), pages 756-771.
    5. Van de Velden, Manon & Baeyens, Jan & Brems, Anke & Janssens, Bart & Dewil, Raf, 2010. "Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction," Renewable Energy, Elsevier, vol. 35(1), pages 232-242.
    6. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    7. Chen, Wei-Hsin & Kuo, Po-Chih, 2011. "Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis," Energy, Elsevier, vol. 36(11), pages 6451-6460.
    8. Rezaei, Hamid & Sokhansanj, Shahab & Bi, Xiaotao & Lim, C. Jim & Lau, Anthony, 2017. "A numerical and experimental study on fast pyrolysis of single woody biomass particles," Applied Energy, Elsevier, vol. 198(C), pages 320-331.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniela Almeida Streitwieser & Arturo Arteaga & Alvaro Gallo-Cordova & Alexis Hidrobo & Sebastian Ponce, 2023. "Chemical Recycling of Used Motor Oil by Catalytic Cracking with Metal-Doped Aluminum Silicate Catalysts," Sustainability, MDPI, vol. 15(13), pages 1-13, July.
    2. Costa, Juliana E.B. & Barbosa, Andrey S. & Melo, Marcus A.F. & Melo, Dulce M.A. & Medeiros, Rodolfo L.B.A. & Braga, Renata M., 2022. "Renewable aromatics through catalytic pyrolysis of coconut fiber (Cocos nucífera Linn.) using low cost HZSM-5," Renewable Energy, Elsevier, vol. 191(C), pages 439-446.
    3. Chen, Bin & Li, Yanlin & Yuan, Mengxue & Shen, Jun & Wang, Sha & Tong, Jianhui & Guo, Yun, 2022. "Study of the Co-pyrolysis characteristics of oil shale with wheat straw based on the hierarchical collection," Energy, Elsevier, vol. 239(PB).
    4. Yang, Shiliang & Dong, Ruihan & Du, Yanxiang & Wang, Shuai & Wang, Hua, 2021. "Numerical study of the biomass pyrolysis process in a spouted bed reactor through computational fluid dynamics," Energy, Elsevier, vol. 214(C).
    5. Zhu, Haodong & Yi, Baojun & Hu, Hongyun & Fan, Qizhou & Wang, Hao & Yao, Hong, 2021. "The effects of char and potassium on the fast pyrolysis behaviors of biomass in an infrared-heating condition," Energy, Elsevier, vol. 214(C).
    6. Mishra, Asmita & Siddiqi, Hammad & Kumari, Usha & Behera, Ipsita Dipamitra & Mukherjee, Subhrajit & Meikap, B.C., 2021. "Pyrolysis of waste lubricating oil/waste motor oil to generate high-grade fuel oil: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Gu, Tianbao & Fu, Zhufu & Berning, Torsten & Li, Xuantian & Yin, Chungen, 2021. "A simplified kinetic model based on a universal description for solid fuels pyrolysis: Theoretical derivation, experimental validation, and application demonstration," Energy, Elsevier, vol. 225(C).
    8. Hu, Fan & Xiong, Biao & Huang, Xiaohong & Liu, Zhaohui, 2023. "Theoretical analysis and experimental verification of diminishing the diffusion influence on determination of char oxidation kinetics by thermo-gravimetric analysis," Energy, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Ruirui & Yang, Wei & Cong, Xingshun & Dong, Kai & Xu, Jie & Wang, Dengfeng & Yang, Xin, 2020. "Thermogravimetric analysis and reaction kinetics of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 201(C).
    2. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    3. Sitek, Tomáš & Pospíšil, Jiří & Poláčik, Ján & Špiláček, Michal & Varbanov, Petar, 2019. "Fine combustion particles released during combustion of unit mass of beechwood," Renewable Energy, Elsevier, vol. 140(C), pages 390-396.
    4. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Ge, Shengbo & Yek, Peter Nai Yuh & Cheng, Yoke Wang & Xia, Changlei & Wan Mahari, Wan Adibah & Liew, Rock Keey & Peng, Wanxi & Yuan, Tong-Qi & Tabatabaei, Meisam & Aghbashlo, Mortaza & Sonne, Christia, 2021. "Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Juan Luis Aguirre & Juan Baena & María Teresa Martín & Leonor Nozal & Sergio González & José Luis Manjón & Manuel Peinado, 2020. "Composition, Ageing and Herbicidal Properties of Wood Vinegar Obtained through Fast Biomass Pyrolysis," Energies, MDPI, vol. 13(10), pages 1-17, May.
    7. Liu, Hui & Liu, Jingyong & Huang, Hongyi & Evrendilek, Fatih & Wen, Shaoting & Li, Weixin, 2021. "Optimizing bioenergy and by-product outputs from durian shell pyrolysis," Renewable Energy, Elsevier, vol. 164(C), pages 407-418.
    8. Brillard, A. & Brilhac, J.F., 2020. "Improvements of global models for the determination of the kinetic parameters associated to the thermal degradation of lignocellulosic materials under low heating rates," Renewable Energy, Elsevier, vol. 146(C), pages 1498-1509.
    9. Ascher, Simon & Watson, Ian & You, Siming, 2022. "Machine learning methods for modelling the gasification and pyrolysis of biomass and waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    10. Jia, Liangyuan & Shao, Wanyun & Wang, Jingjing & Qian, Yingying & Chen, Yingquan & Yang, Qingchun, 2024. "Machine learning-aided prediction of bio-BTX and olefins production from zeolite-catalyzed biomass pyrolysis," Energy, Elsevier, vol. 306(C).
    11. Collazo, Joaquín & Pazó, José Antonio & Granada, Enrique & Saavedra, Ángeles & Eguía, Pablo, 2012. "Determination of the specific heat of biomass materials and the combustion energy of coke by DSC analysis," Energy, Elsevier, vol. 45(1), pages 746-752.
    12. Ortiz, Leandro Rodriguez & Torres, Erick & Zalazar, Daniela & Zhang, Huili & Rodriguez, Rosa & Mazza, Germán, 2020. "Influence of pyrolysis temperature and bio-waste composition on biochar characteristics," Renewable Energy, Elsevier, vol. 155(C), pages 837-847.
    13. Kim, Heeyoon & Yu, Seunghan & Ra, Howon & Yoon, Sungmin & Ryu, Changkook, 2023. "Prediction of pyrolysis kinetics for torrefied biomass based on raw biomass properties and torrefaction severity," Energy, Elsevier, vol. 278(C).
    14. José Airton de Mattos Carneiro-Junior & Giulyane Felix de Oliveira & Carine Tondo Alves & Heloysa Martins Carvalho Andrade & Silvio Alexandre Beisl Vieira de Melo & Ednildo Andrade Torres, 2021. "Valorization of Prosopis juliflora Woody Biomass in Northeast Brazilian through Dry Torrefaction," Energies, MDPI, vol. 14(12), pages 1-17, June.
    15. Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    16. Niemelä, Niko P. & Tolvanen, Henrik & Saarinen, Teemu & Leppänen, Aino & Joronen, Tero, 2017. "CFD based reactivity parameter determination for biomass particles of multiple size ranges in high heating rate devolatilization," Energy, Elsevier, vol. 128(C), pages 676-687.
    17. Hongbo Du, & Deng, Fang & Kommalapati, Raghava R. & Amarasekara, Ananda S., 2020. "Iron based catalysts in biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Al-Rumaihi, Aisha & Shahbaz, Muhammad & Mckay, Gordon & Mackey, Hamish & Al-Ansari, Tareq, 2022. "A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Izydorczyk, Grzegorz & Skrzypczak, Dawid & Kocek, Daria & Mironiuk, Małgorzata & Witek-Krowiak, Anna & Moustakas, Konstantinos & Chojnacka, Katarzyna, 2020. "Valorization of bio-based post-extraction residues of goldenrod and alfalfa as energy pellets," Energy, Elsevier, vol. 194(C).
    20. Alexandre Tisserant & Francesco Cherubini, 2019. "Potentials, Limitations, Co-Benefits, and Trade-Offs of Biochar Applications to Soils for Climate Change Mitigation," Land, MDPI, vol. 8(12), pages 1-34, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:204:y:2020:i:c:s0360544220310409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.