IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v298y2021ics0306261921005766.html
   My bibliography  Save this article

Investigation on in-situ water ice recovery considering energy efficiency at the lunar south pole

Author

Listed:
  • Song, Hongqing
  • Zhang, Jie
  • Ni, Dongdong
  • Sun, Yueqiang
  • Zheng, Yongchun
  • Kou, Jue
  • Zhang, Xianguo
  • Li, Zhengyi

Abstract

It is of great significance to realize the in-situ utilization of lunar water ice for the establishment and sustainable operation of the future lunar base. Considering the location of water ice in the lunar polar regions, based on the in-situ thermal mining method, an integrated approach for the water ice recovery was established. The evolution characteristics of average temperature of the icy soil and water vapor collection rate with the mining time were analyzed. The optimal mining temperature for the recovery of water ice was studied. The energy efficiency under various arrangement densities of heating elements was assessed with the optimal number of heating elements determined. The results show that as the mining time increases, for different target mining temperatures, the average temperature of the icy soil rapidly rise at first, and then tend to stabilize. The water vapor collection rates at different target mining temperatures vary greatly due to the difference in saturated vapor pressure of water ice. At high mining temperatures, the sublimation coefficient also significantly affects the process of water vapor collection. The water vapor collection rate with sublimation coefficient being unity is up to 36% larger than that with non-constant sublimation coefficient for the lunar soil under investigation within four earth weeks at the target mining temperature of 240 K. In addition, the increase of the mining temperature increases the water vapor collection rate, and at the same time, the water vapor pressure in the capture tent also increases, which may lead to the instability of the water ice production system. Combining with water vapor collection rate and change rate of water vapor pressure in the capture tent, the temperature of 220 K is obtained as the optimal target mining temperature. Furthermore, for the lunar soil in this work, the energy efficiencies for water ice production with seven and nine heating elements are same, and greater than that with five heating elements. Considering the energy efficiency, the minimum number of heating elements could be determined.

Suggested Citation

  • Song, Hongqing & Zhang, Jie & Ni, Dongdong & Sun, Yueqiang & Zheng, Yongchun & Kou, Jue & Zhang, Xianguo & Li, Zhengyi, 2021. "Investigation on in-situ water ice recovery considering energy efficiency at the lunar south pole," Applied Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:appene:v:298:y:2021:i:c:s0306261921005766
    DOI: 10.1016/j.apenergy.2021.117136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921005766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pezzini, Paola & Gomis-Bellmunt, Oriol & Sudrià-Andreu, Antoni, 2011. "Optimization techniques to improve energy efficiency in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2028-2041, May.
    2. Shi, Yu & Song, Xianzhi & Shen, Zhonghou & Wang, Gaosheng & Li, Xiaojiang & Zheng, Rui & Geng, Lidong & Li, Jiacheng & Zhang, Shikun, 2018. "Numerical investigation on heat extraction performance of a CO2 enhanced geothermal system with multilateral wells," Energy, Elsevier, vol. 163(C), pages 38-51.
    3. Lu, Xiaochen & Ma, Rong & Wang, Chao & Yao, Wei, 2016. "Performance analysis of a lunar based solar thermal power system with regolith thermal storage," Energy, Elsevier, vol. 107(C), pages 227-233.
    4. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
    5. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    6. Zhang, Tao & Li, Yiteng & Chen, Yin & Feng, Xiaoyu & Zhu, Xingyu & Chen, Zhangxing & Yao, Jun & Zheng, Yongchun & Cai, Jianchao & Song, Hongqing & Sun, Shuyu, 2021. "Review on space energy," Applied Energy, Elsevier, vol. 292(C).
    7. Ijaodola, O.S. & El- Hassan, Zaki & Ogungbemi, E. & Khatib, F.N. & Wilberforce, Tabbi & Thompson, James & Olabi, A.G., 2019. "Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC)," Energy, Elsevier, vol. 179(C), pages 246-267.
    8. Jessica J. Barnes & David A. Kring & Romain Tartèse & Ian A. Franchi & Mahesh Anand & Sara S. Russell, 2016. "An asteroidal origin for water in the Moon," Nature Communications, Nature, vol. 7(1), pages 1-10, September.
    9. Song, Xianzhi & Shi, Yu & Li, Gensheng & Yang, Ruiyue & Wang, Gaosheng & Zheng, Rui & Li, Jiacheng & Lyu, Zehao, 2018. "Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells," Applied Energy, Elsevier, vol. 218(C), pages 325-337.
    10. Chen, Shaoqing & Chen, Bin, 2014. "Energy efficiency and sustainability of complex biogas systems: A 3-level emergetic evaluation," Applied Energy, Elsevier, vol. 115(C), pages 151-163.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Yu & Song, Xianzhi & Wang, Gaosheng & McLennan, John & Forbes, Bryan & Li, Xiaojiang & Li, Jiacheng, 2019. "Study on wellbore fluid flow and heat transfer of a multilateral-well CO2 enhanced geothermal system," Applied Energy, Elsevier, vol. 249(C), pages 14-27.
    2. Wei, Xin & Feng, Zi-jun & Zhao, Yang-sheng, 2019. "Numerical simulation of thermo-hydro-mechanical coupling effect in mining fault-mode hot dry rock geothermal energy," Renewable Energy, Elsevier, vol. 139(C), pages 120-135.
    3. Lin, David T.W. & Hsieh, Jui Ching & Shih, Bo Yen, 2019. "The optimization of geothermal extraction based on supercritical CO2 porous heat transfer model," Renewable Energy, Elsevier, vol. 143(C), pages 1162-1171.
    4. Zinsalo, Joël M. & Lamarche, Louis & Raymond, Jasmin, 2022. "Performance analysis and working fluid selection of an Organic Rankine Cycle Power Plant coupled to an Enhanced Geothermal System," Energy, Elsevier, vol. 245(C).
    5. Zhou, Luming & Zhu, Zhende & Xie, Xinghua & Hu, Yunjin, 2022. "Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance," Renewable Energy, Elsevier, vol. 181(C), pages 1440-1458.
    6. Wang, Fei & Fu, Shanfei & Guo, Gang & Jia, Zhen-Zhen & Luo, Sheng-Jun & Guo, Rong-Bo, 2016. "Experimental study on hydrate-based CO2 removal from CH4/CO2 mixture," Energy, Elsevier, vol. 104(C), pages 76-84.
    7. Shu, Biao & Zhu, Runjun & Elsworth, Derek & Dick, Jeffrey & Liu, Shun & Tan, Jingqiang & Zhang, Shaohe, 2020. "Effect of temperature and confining pressure on the evolution of hydraulic and heat transfer properties of geothermal fracture in granite," Applied Energy, Elsevier, vol. 272(C).
    8. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Zhang, Haijun, 2020. "Numerical simulation study on the heat extraction performance of multi-well injection enhanced geothermal system," Renewable Energy, Elsevier, vol. 151(C), pages 782-795.
    9. Yin, Weitao & Zhao, Yangsheng & Feng, Zijun, 2020. "Experimental research on the permeability of fractured-subsequently-filled granite under high temperature-high pressure and the application to HDR geothermal mining," Renewable Energy, Elsevier, vol. 153(C), pages 499-508.
    10. Yu, Likui & Wu, Xiaotian & Hassan, N.M.S. & Wang, Yadan & Ma, Weiwu & Liu, Gang, 2020. "Modified zipper fracturing in enhanced geothermal system reservoir and heat extraction optimization via orthogonal design," Renewable Energy, Elsevier, vol. 161(C), pages 373-385.
    11. Song, Guofeng & Song, Xianzhi & Li, Gensheng & Shi, Yu & Wang, Gaosheng & Ji, Jiayan & Xu, Fuqiang & Song, Zihao, 2021. "An integrated multi-objective optimization method to improve the performance of multilateral-well geothermal system," Renewable Energy, Elsevier, vol. 172(C), pages 1233-1249.
    12. Zhang, Jie & Xie, Jingxuan, 2020. "Effect of reservoir’s permeability and porosity on the performance of cellular development model for enhanced geothermal system," Renewable Energy, Elsevier, vol. 148(C), pages 824-838.
    13. Liu, Zekuan & Wang, Zixuan & Cheng, Kunlin & Wang, Cong & Ha, Chan & Fei, Teng & Qin, Jiang, 2023. "Performance assessment of closed Brayton cycle-organic Rankine cycle lunar base energy system: Thermodynamic analysis, multi-objective optimization," Energy, Elsevier, vol. 278(PA).
    14. Shi, Yu & Cui, Qiliang & Song, Xianzhi & Xu, Fuqiang & Song, Guofeng, 2022. "Study on thermal performances of a horizontal ground heat exchanger geothermal system with different configurations and arrangements," Renewable Energy, Elsevier, vol. 193(C), pages 448-463.
    15. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Huang, Guangping & Liu, Wei Victor, 2021. "Effects of temperature-dependent property variations on the output capacity prediction of a deep coaxial borehole heat exchanger," Renewable Energy, Elsevier, vol. 165(P1), pages 334-349.
    16. Li, Xinxin & Li, Chengyu & Gong, Wenping & Zhang, Yanjie & Wang, Junchao, 2023. "Probabilistic analysis of heat extraction performance in enhanced geothermal system based on a DFN-based modeling scheme," Energy, Elsevier, vol. 263(PC).
    17. Wang, Nanzhe & Chang, Haibin & Kong, Xiang-Zhao & Zhang, Dongxiao, 2023. "Deep learning based closed-loop well control optimization of geothermal reservoir with uncertain permeability," Renewable Energy, Elsevier, vol. 211(C), pages 379-394.
    18. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2022. "Utilizing geothermal energy from enhanced geothermal systems as a heat source for oil sands separation: A numerical evaluation," Energy, Elsevier, vol. 238(PA).
    19. Linkai Li & Xiao Guo & Ming Zhou & Gang Xiang & Ning Zhang & Yue Wang & Shengyuan Wang & Arnold Landjobo Pagou, 2021. "The Investigation of Fracture Networks on Heat Extraction Performance for an Enhanced Geothermal System," Energies, MDPI, vol. 14(6), pages 1-18, March.
    20. Zhao, Peng & Liu, Jun & Elsworth, Derek, 2023. "Numerical study on a multifracture enhanced geothermal system considering matrix permeability enhancement induced by thermal unloading," Renewable Energy, Elsevier, vol. 203(C), pages 33-44.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:298:y:2021:i:c:s0306261921005766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.