IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224015408.html
   My bibliography  Save this article

Discrete-time sliding mode prescribed performance controller via Kalman filter and disturbance observer for load following of a pressurized water reactor

Author

Listed:
  • Hui, Jiuwu

Abstract

In practical implementations, most nuclear reactors employ digital controllers to accomplish the load following operation. However, most of the pre-existing works only focus on continuous time controller design, which may yield degraded control performance when the control strategy is employed by a digital controller owing to the finite sampling frequency and the inevitable discrete-time approximations. To this end, this paper proposes a discrete-time sliding mode prescribed performance controller (DTSMPPC) via Kalman filter (KF) and disturbance observer (DO) for a pressurized water reactor (PWR), aiming to achieve an easier implementation on the practical nuclear reactor systems. Specifically, the continuous mathematical model of the PWR system with consideration of model errors and disturbances is first transformed to a discrete-time form by virtue of Euler’s discretization technique. Then, based on this transformed discrete-time model, the KF and DO, which provide the estimates of unmeasured system states (relative density of delayed neutron precursor, average fuel temperature, xenon concentration, and iodine concentration) and uncertainties, respectively, are constructed using the input/output measurement information acquired from the nuclear reactor system merely. By incorporating the observed information provided by the KF and DO into the control framework, the proposed DTSMPPC enables the load following error to fulfill the accurate and robust performance requirement even in the presence of unmeasured system states and uncertainties, while at the same time ensuring the transient and steady-state load following error within a prescribed zone described by performance functions. The system stability and the aforementioned theoretical findings are proved through rigorous analysis and simulations. Simulation results also reveal that the proposed DTSMPPC via the KF and DO yields a superior load following performance compared with some previous control strategies.

Suggested Citation

  • Hui, Jiuwu, 2024. "Discrete-time sliding mode prescribed performance controller via Kalman filter and disturbance observer for load following of a pressurized water reactor," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015408
    DOI: 10.1016/j.energy.2024.131767
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224015408
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131767?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murshed, Muntasir & Saboori, Behnaz & Madaleno, Mara & Wang, Hong & Doğan, Buhari, 2022. "Exploring the nexuses between nuclear energy, renewable energy, and carbon dioxide emissions: The role of economic complexity in the G7 countries," Renewable Energy, Elsevier, vol. 190(C), pages 664-674.
    2. Hassan, Syed Tauseef & Khan, Danish & Zhu, Bangzhu & Batool, Bushra, 2022. "Is public service transportation increase environmental contamination in China? The role of nuclear energy consumption and technological change," Energy, Elsevier, vol. 238(PC).
    3. Dong, Zhe & Pan, Yifei & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2017. "Model-free adaptive control law for nuclear superheated-steam supply systems," Energy, Elsevier, vol. 135(C), pages 53-67.
    4. Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
    5. Dong, Zhe & Liu, Miao & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2019. "Adaptive state-observer for monitoring flexible nuclear reactors," Energy, Elsevier, vol. 171(C), pages 893-909.
    6. Hui, Jiuwu & Yuan, Jingqi, 2021. "Chattering-free higher order sliding mode controller with a high-gain observer for the load following of a pressurized water reactor," Energy, Elsevier, vol. 223(C).
    7. Hui, Jiuwu & Lee, Yi-Kuen & Yuan, Jingqi, 2023. "ESO-based adaptive event-triggered load following control design for a pressurized water reactor with samarium–promethium dynamics," Energy, Elsevier, vol. 271(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui, Jiuwu & Lee, Yi-Kuen & Yuan, Jingqi, 2023. "ESO-based adaptive event-triggered load following control design for a pressurized water reactor with samarium–promethium dynamics," Energy, Elsevier, vol. 271(C).
    2. Zhe Dong & Zhonghua Cheng & Yunlong Zhu & Xiaojin Huang & Yujie Dong & Zuoyi Zhang, 2023. "Review on the Recent Progress in Nuclear Plant Dynamical Modeling and Control," Energies, MDPI, vol. 16(3), pages 1-19, February.
    3. Hui, Jiuwu & Yuan, Jingqi, 2022. "Load following control of a pressurized water reactor via finite-time super-twisting sliding mode and extended state observer techniques," Energy, Elsevier, vol. 241(C).
    4. Dong, Zhe & Li, Bowen & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2022. "Power-pressure coordinated control of modular high temperature gas-cooled reactors," Energy, Elsevier, vol. 252(C).
    5. Hui, Jiuwu & Yuan, Jingqi, 2022. "Neural network-based adaptive fault-tolerant control for load following of a MHTGR with prescribed performance and CRDM faults," Energy, Elsevier, vol. 257(C).
    6. Hui, Jiuwu, 2024. "Discrete-time integral terminal sliding mode load following controller coupled with disturbance observer for a modular high-temperature gas-cooled reactor," Energy, Elsevier, vol. 292(C).
    7. Hui, Jiuwu & Lee, Yi-Kuen & Yuan, Jingqi, 2023. "Load following control of a PWR with load-dependent parameters and perturbations via fixed-time fractional-order sliding mode and disturbance observer techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    8. Cui, Chengcheng & Zhang, Junli & Shen, Jiong, 2023. "System-level modeling, analysis and coordinated control design for the pressurized water reactor nuclear power system," Energy, Elsevier, vol. 283(C).
    9. Hui, Jiuwu, 2024. "Coordinated discrete-time super-twisting sliding mode controller coupled with time-delay estimator for PWR-based nuclear steam supply system," Energy, Elsevier, vol. 301(C).
    10. Hui, Jiuwu & Yuan, Jingqi, 2021. "Chattering-free higher order sliding mode controller with a high-gain observer for the load following of a pressurized water reactor," Energy, Elsevier, vol. 223(C).
    11. Kartal, Mustafa Tevfik & Ghosh, Sudeshna & Adebayo, Tomiwa Sunday, 2023. "Renewable energy effect on economy and environment: The case of G7 countries through novel bootstrap rolling window approach," Renewable Energy, Elsevier, vol. 216(C).
    12. Muhammad Usman & Atif Jahanger & Magdalena Radulescu & Daniel Balsalobre-Lorente, 2022. "Do Nuclear Energy, Renewable Energy, and Environmental-Related Technologies Asymmetrically Reduce Ecological Footprint? Evidence from Pakistan," Energies, MDPI, vol. 15(9), pages 1-24, May.
    13. Kristiana Dolge & Dagnija Blumberga, 2023. "Transitioning to Clean Energy: A Comprehensive Analysis of Renewable Electricity Generation in the EU-27," Energies, MDPI, vol. 16(18), pages 1-27, September.
    14. Zhang, Tianhao & Dong, Zhe & Huang, Xiaojin, 2024. "Multi-objective optimization of thermal power and outlet steam temperature for a nuclear steam supply system with deep reinforcement learning," Energy, Elsevier, vol. 286(C).
    15. Yunlong Zhu & Zhe Dong & Xiaojin Huang & Yujie Dong & Yajun Zhang & Zuoyi Zhang, 2022. "Passivity-Based Power-Level Control of Nuclear Reactors," Energies, MDPI, vol. 15(14), pages 1-11, July.
    16. Nooshin Karimi Alavijeh & Narges Salehnia, 2024. "Climate change, renewable and non-renewable energy consumption and agricultural development in the Middle East and North African countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 21125-21145, August.
    17. Zhe Dong, 2017. "Boolean Network-Based Sensor Selection with Application to the Fault Diagnosis of a Nuclear Plant," Energies, MDPI, vol. 10(12), pages 1-13, December.
    18. Li, Jiangkuan & Lin, Meng & Li, Yankai & Wang, Xu, 2022. "Transfer learning network for nuclear power plant fault diagnosis with unlabeled data under varying operating conditions," Energy, Elsevier, vol. 254(PB).
    19. Wang, Zihan & Chen, Xi & Ullah, Sami & Abbas, Shujaat, 2023. "Resource curse or blessing? Evaluating the role of natural resource, social globalization, and environmental sustainability in China," Resources Policy, Elsevier, vol. 85(PA).
    20. Ashutosh Yadav & Bright Akwasi Gyamfi & Simplice A. Asongu & Deepak Kumar Behera, 2021. "The role of green finance and governance effectiveness in the impact of renewable energy investment on CO2 emissions in BRICS economies," Working Papers 24/015, European Xtramile Centre of African Studies (EXCAS).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.