IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2166-d237676.html
   My bibliography  Save this article

Life Cycle Assessment and Environmental Valuation of Biochar Production: Two Case Studies in Belgium

Author

Listed:
  • Sara Rajabi Hamedani

    (Department of Agriculture and Forest Sciences, Tuscia University, 01100 Viterbo, Italy)

  • Tom Kuppens

    (Environmental Economics Research Group, Centre for Environmental Sciences (CMK), Hasselt University, 3590 Diepenbeek, Belgium)

  • Robert Malina

    (Environmental Economics Research Group, Centre for Environmental Sciences (CMK), Hasselt University, 3590 Diepenbeek, Belgium
    Laboratory for Aviation and the Environment, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA)

  • Enrico Bocci

    (Department of Innovation and Information Engineering, Marconi University, 00193 Rome, Italy)

  • Andrea Colantoni

    (Department of Agriculture and Forest Sciences, Tuscia University, 01100 Viterbo, Italy)

  • Mauro Villarini

    (Department of Agriculture and Forest Sciences, Tuscia University, 01100 Viterbo, Italy)

Abstract

It is unclear whether the production of biochar is economically feasible. As a consequence, firms do not often invest in biochar production plants. However, biochar production and application might be desirable from a societal perspective as it might entail net environmental benefits. Hence, the aim of this work has been to assess and monetize the environmental impacts of biochar production systems so that the environmental aspects can be integrated with the economic and social ones later on to quantify the total return for society. Therefore, a life cycle analysis (LCA) has been performed for two potential biochar production systems in Belgium based on two different feedstocks: (i) willow and (ii) pig manure. First, the environmental impacts of the two biochar production systems are assessed from a life cycle perspective, assuming one ton of biochar as the functional unit. Therefore, LCA using SimaPro software has been performed both on the midpoint and endpoint level. Biochar production from willow achieves better results compared to biochar from pig manure for all environmental impact categories considered. In a second step, monetary valuation has been applied to the LCA results in order to weigh environmental benefits against environmental costs using the Ecotax, Ecovalue, and Stepwise approach. Consequently, sensitivity analysis investigates the impact of variation in NPK savings and byproducts of the biochar production process on monetized life cycle assessment results. As a result, it is suggested that biochar production from willow is preferred to biochar production from pig manure from an environmental point of view. In future research, those monetized environmental impacts will be integrated within existing techno-economic models that calculate the financial viability from an investor’s point of view, so that the total return for society can be quantified and the preferred biochar production system from a societal point of view can be identified.

Suggested Citation

  • Sara Rajabi Hamedani & Tom Kuppens & Robert Malina & Enrico Bocci & Andrea Colantoni & Mauro Villarini, 2019. "Life Cycle Assessment and Environmental Valuation of Biochar Production: Two Case Studies in Belgium," Energies, MDPI, vol. 12(11), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2166-:d:237676
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2166/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2166/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert S. Frazier & Enze Jin & Ajay Kumar, 2015. "Life Cycle Assessment of Biochar versus Metal Catalysts Used in Syngas Cleaning," Energies, MDPI, vol. 8(1), pages 1-24, January.
    2. Lee, Uisung & Balu, Elango & Chung, J.N., 2013. "An experimental evaluation of an integrated biomass gasification and power generation system for distributed power applications," Applied Energy, Elsevier, vol. 101(C), pages 699-708.
    3. Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
    4. Kauffman, Nathan & Dumortier, Jerome & Hayes, Dermot J. & Brown, Robert C. & Laird, David, 2014. "Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity," ISU General Staff Papers 201404010700001488, Iowa State University, Department of Economics.
    5. Weidema, Bo Pedersen, 2009. "Using the budget constraint to monetarise impact assessment results," Ecological Economics, Elsevier, vol. 68(6), pages 1591-1598, April.
    6. Hammond, Jim & Shackley, Simon & Sohi, Saran & Brownsort, Peter, 2011. "Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK," Energy Policy, Elsevier, vol. 39(5), pages 2646-2655, May.
    7. Sahoo, Kamalakanta & Bilek, Edward & Bergman, Richard & Mani, Sudhagar, 2019. "Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems," Applied Energy, Elsevier, vol. 235(C), pages 578-590.
    8. Huang, Y. & Anderson, M. & McIlveen-Wright, D. & Lyons, G.A. & McRoberts, W.C. & Wang, Y.D. & Roskilly, A.P. & Hewitt, N.J., 2015. "Biochar and renewable energy generation from poultry litter waste: A technical and economic analysis based on computational simulations," Applied Energy, Elsevier, vol. 160(C), pages 656-663.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Algirdas Jasinskas & Dionizas Streikus & Egidijus Šarauskis & Mečys Palšauskas & Kęstutis Venslauskas, 2020. "Energy Evaluation and Greenhouse Gas Emissions of Reed Plant Pelletizing and Utilization as Solid Biofuel," Energies, MDPI, vol. 13(6), pages 1-14, March.
    2. Katsuyuki Nakano & Ken Yamagishi, 2021. "Impact of Carbon Tax Increase on Product Prices in Japan," Energies, MDPI, vol. 14(7), pages 1-19, April.
    3. Sara Rajabi Hamedani & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Massimo Cecchini & Francesco Santoro & Antonio Pantaleo, 2020. "Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant," Energies, MDPI, vol. 13(11), pages 1-14, May.
    4. Struhs, Ethan & Mirkouei, Amin & You, Yaqi & Mohajeri, Amir, 2020. "Techno-economic and environmental assessments for nutrient-rich biochar production from cattle manure: A case study in Idaho, USA," Applied Energy, Elsevier, vol. 279(C).
    5. Andrea Colantoni & Rodolfo Picchio & Alvaro Marucci & Elena Di Mattia & Valerio Cristofori & Fabio Recanatesi & Mauro Villarini & Danilo Monarca & Massimo Cecchini, 2020. "WP3—Innovation in Agriculture and Forestry Sector for Energetic Sustainability," Energies, MDPI, vol. 13(22), pages 1-7, November.
    6. Polina Kuryntseva & Kamalya Karamova & Polina Galitskaya & Svetlana Selivanovskaya & Gennady Evtugyn, 2023. "Biochar Functions in Soil Depending on Feedstock and Pyrolyzation Properties with Particular Emphasis on Biological Properties," Agriculture, MDPI, vol. 13(10), pages 1-39, October.
    7. Marco Maialetti & Clio Ciaschini & Giovanni Quaranta & Rosanna Salvia & Donato Scarpitta & Stefano Bigiotti & Francesco Maria Chelli & Luca Salvati, 2024. "Investigating ‘Land-Use Trajectories’ in Mediterranean Rural Areas with Official Statistics and a Multiway Factor Analysis," Sustainability, MDPI, vol. 16(17), pages 1-16, September.
    8. Yuan, Xiangzhou & Wang, Junyao & Deng, Shuai & Suvarna, Manu & Wang, Xiaonan & Zhang, Wei & Hamilton, Sara Triana & Alahmed, Ammar & Jamal, Aqil & Park, Ah-Hyung Alissa & Bi, Xiaotao & Ok, Yong Sik, 2022. "Recent advancements in sustainable upcycling of solid waste into porous carbons for carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Alexandre Tisserant & Francesco Cherubini, 2019. "Potentials, Limitations, Co-Benefits, and Trade-Offs of Biochar Applications to Soils for Climate Change Mitigation," Land, MDPI, vol. 8(12), pages 1-34, November.
    10. Rajabi Hamedani, Sara & Villarini, Mauro & Marcantonio, Vera & di Matteo, Umberto & Monarca, Danilo & Colantoni, Andrea, 2023. "Comparative energy and environmental analysis of different small-scale biomass-fueled CCHP systems," Energy, Elsevier, vol. 263(PD).
    11. Kledja Canaj & Andi Mehmeti & Julio Berbel, 2021. "The Economics of Fruit and Vegetable Production Irrigated with Reclaimed Water Incorporating the Hidden Costs of Life Cycle Environmental Impacts," Resources, MDPI, vol. 10(9), pages 1-13, September.
    12. Mong, Guo Ren & Chong, Cheng Tung & Ng, Jo-Han & Chong, William Woei Fong & Ong, Hwai Chyuan & Tran, Manh-Vu, 2021. "Multivariate optimisation study and life cycle assessment of microwave-induced pyrolysis of horse manure for waste valorisation and management," Energy, Elsevier, vol. 216(C).
    13. Roy, Poritosh & Dutta, Animesh & Gallant, Jim, 2020. "Evaluation of the life cycle of hydrothermally carbonized biomass for energy and horticulture application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    14. Lauri Leppäkoski & Miika P. Marttila & Ville Uusitalo & Jarkko Levänen & Vilma Halonen & Mirja H. Mikkilä, 2021. "Assessing the Carbon Footprint of Biochar from Willow Grown on Marginal Lands in Finland," Sustainability, MDPI, vol. 13(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Struhs, Ethan & Mirkouei, Amin & You, Yaqi & Mohajeri, Amir, 2020. "Techno-economic and environmental assessments for nutrient-rich biochar production from cattle manure: A case study in Idaho, USA," Applied Energy, Elsevier, vol. 279(C).
    2. Yang, Qiushuang & Mašek, Ondřej & Zhao, Ling & Nan, Hongyan & Yu, Shitong & Yin, Jianxiang & Li, Zhaopeng & Cao, Xinde, 2021. "Country-level potential of carbon sequestration and environmental benefits by utilizing crop residues for biochar implementation," Applied Energy, Elsevier, vol. 282(PB).
    3. Simone Marzeddu & Andrea Cappelli & Andrea Ambrosio & María Alejandra Décima & Paolo Viotti & Maria Rosaria Boni, 2021. "A Life Cycle Assessment of an Energy-Biochar Chain Involving a Gasification Plant in Italy," Land, MDPI, vol. 10(11), pages 1-29, November.
    4. Kächele, Rebecca & Nurkowski, Daniel & Martin, Jacob & Akroyd, Jethro & Kraft, Markus, 2019. "An assessment of the viability of alternatives to biodiesel transport fuels," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Mousavi-Avval, Seyed Hashem & Sahoo, Kamalakanta & Nepal, Prakash & Runge, Troy & Bergman, Richard, 2023. "Environmental impacts and techno-economic assessments of biobased products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    6. Anand, Abhijeet & Kumar, Vivek & Kaushal, Priyanka, 2022. "Biochar and its twin benefits: Crop residue management and climate change mitigation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Chiappero, Marco & Norouzi, Omid & Hu, Mingyu & Demichelis, Francesca & Berruti, Franco & Di Maria, Francesco & Mašek, Ondřej & Fiore, Silvia, 2020. "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. Lan, Kai & Ou, Longwen & Park, Sunkyu & Kelley, Stephen S. & English, Burton C. & Yu, T. Edward & Larson, James & Yao, Yuan, 2021. "Techno-Economic Analysis of decentralized preprocessing systems for fast pyrolysis biorefineries with blended feedstocks in the southeastern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Alexandre Tisserant & Francesco Cherubini, 2019. "Potentials, Limitations, Co-Benefits, and Trade-Offs of Biochar Applications to Soils for Climate Change Mitigation," Land, MDPI, vol. 8(12), pages 1-34, November.
    10. Anni Orola & Anna Härri & Jarkko Levänen & Ville Uusitalo & Stig Irving Olsen, 2022. "Assessing WELBY Social Life Cycle Assessment Approach through Cobalt Mining Case Study," Sustainability, MDPI, vol. 14(18), pages 1-26, September.
    11. Bujak, Janusz & Sitarz, Piotr & Jasiewicz, Paulina, 2018. "Fuel consumption in the thermal treatment of low-calorific industrial food processing waste," Applied Energy, Elsevier, vol. 221(C), pages 139-147.
    12. Thakkar, Jignesh & Kumar, Amit & Ghatora, Sonia & Canter, Christina, 2016. "Energy balance and greenhouse gas emissions from the production and sequestration of charcoal from agricultural residues," Renewable Energy, Elsevier, vol. 94(C), pages 558-567.
    13. Okey Francis Obi & Temitope Olumide Olugbade & Joseph Ifeolu Orisaleye & Ralf Pecenka, 2023. "Solid Biofuel Production from Biomass: Technologies, Challenges, and Opportunities for Its Commercial Production in Nigeria," Energies, MDPI, vol. 16(24), pages 1-22, December.
    14. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    15. Vahakn Kabakian & Marcelle McManus, 2024. "From private to social cost-benefit analysis: life cycle environmental impact cost internalization in cement production fuel switching," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 25527-25548, October.
    16. Alsulami, Radi A. & El-Sayed, Saad A. & Eltaher, Mohamed A. & Mohammad, Akram & Almitani, Khalid H. & Mostafa, Mohamed E., 2023. "Pyrolysis kinetics and thermal degradation characteristics of coffee, date seed, and prickly pear wastes and their blends," Renewable Energy, Elsevier, vol. 216(C).
    17. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    18. Lauri Leppäkoski & Miika P. Marttila & Ville Uusitalo & Jarkko Levänen & Vilma Halonen & Mirja H. Mikkilä, 2021. "Assessing the Carbon Footprint of Biochar from Willow Grown on Marginal Lands in Finland," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    19. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Shew, Aaron M. & Nalley, Lawton L. & Durand-Morat, Alvaro & Meredith, Kylie & Parajuli, Ranjan & Thoma, Greg & Henry, Christopher G., 2021. "Holistically valuing public investments in agricultural water conservation," Agricultural Water Management, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2166-:d:237676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.