IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v212y2020ics0360544220314973.html
   My bibliography  Save this article

Thermal modeling of indirect water heater in city gate station of natural gas to evaluate efficiency and fuel consumption

Author

Listed:
  • Mostafavi, Seyed Alireza
  • Shirazi, Mohammad

Abstract

In this paper, a comprehensive model of indirect water heater for a pressure reduction station of natural gas has been presented. Effiiency and fuel consumption of heater have been estimated by applying energy and mass conservation equations. Three terms of energy including heat absorbed by natural gas, heat transferred to environment from stack and heat loses to environment from heater body have been evaluated. Thermal properties of natural gas has been calcualated using AGA8 state equation. Therefore, the model is a function of climate, heater geometry and natural gas characteristics including temperature, pressure and its composition. The results are compared with data recorded from real station in Iran (Arak, Kheriabad and Malekabad stations) and very good agreement has been observed. Reducing temperature and increasing pressure of inlet gas, thickening glass wool insulation and rising fire tube radius led to an increase in heater’s thermal efficiency from 20 to 60% and consequently fuel consumption of heater was reduced. Finally, choosing the sutible geometery yeilded a higher heater efficincy with a raise from 44% to 70%.

Suggested Citation

  • Mostafavi, Seyed Alireza & Shirazi, Mohammad, 2020. "Thermal modeling of indirect water heater in city gate station of natural gas to evaluate efficiency and fuel consumption," Energy, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:energy:v:212:y:2020:i:c:s0360544220314973
    DOI: 10.1016/j.energy.2020.118390
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220314973
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118390?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olfati, Mohammad & Bahiraei, Mehdi & Heidari, Setareh & Veysi, Farzad, 2018. "A comprehensive analysis of energy and exergy characteristics for a natural gas city gate station considering seasonal variations," Energy, Elsevier, vol. 155(C), pages 721-733.
    2. Arabkoohsar, A. & Machado, L. & Koury, R.N.N., 2016. "Operation analysis of a photovoltaic plant integrated with a compressed air energy storage system and a city gate station," Energy, Elsevier, vol. 98(C), pages 78-91.
    3. Arabkoohsar, A. & Ismail, K.A.R. & Machado, L. & Koury, R.N.N., 2016. "Energy consumption minimization in an innovative hybrid power production station by employing PV and evacuated tube collector solar thermal systems," Renewable Energy, Elsevier, vol. 93(C), pages 424-441.
    4. Farzaneh-Gord, M. & Arabkoohsar, A. & Deymi Dasht-bayaz, M. & Farzaneh-Kord, V., 2012. "Feasibility of accompanying uncontrolled linear heater with solar system in natural gas pressure drop stations," Energy, Elsevier, vol. 41(1), pages 420-428.
    5. Ghezelbash, Reza & Farzaneh-Gord, Mahmood & Behi, Hamidreza & Sadi, Meisam & Khorramabady, Heshmatollah Shams, 2015. "Performance assessment of a natural gas expansion plant integrated with a vertical ground-coupled heat pump," Energy, Elsevier, vol. 93(P2), pages 2503-2517.
    6. Lee, Sang Yeol & Oh, Kwang Cheol & Lee, Chung Geon & Cho, La Hoon & Park, Sun Yong & Jeong, In Seon & Kim, Dae Hyun, 2018. "Improvement of thermal efficiency of wood pellet boilers through the refractory insulation in a combustion chamber and fire tube and baffle modification," Energy, Elsevier, vol. 161(C), pages 1115-1121.
    7. Hribar, Rok & Potočnik, Primož & Šilc, Jurij & Papa, Gregor, 2019. "A comparison of models for forecasting the residential natural gas demand of an urban area," Energy, Elsevier, vol. 167(C), pages 511-522.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Yaxuan & An, Shuo & Xu, Peng & Ding, Yulong & Li, Chuan & Zhang, Qunli & Chen, Hongbing, 2018. "A novel expander-depending natural gas pressure regulation configuration: Performance analysis," Applied Energy, Elsevier, vol. 220(C), pages 21-35.
    2. Sadi, M. & Arabkoohsar, A., 2019. "Exergoeconomic analysis of a combined solar-waste driven power plant," Renewable Energy, Elsevier, vol. 141(C), pages 883-893.
    3. Arabkoohsar, Ahmad & Rahrabi, Hamid Reza & Alsagri, Ali Sulaiman & Alrobaian, Abdulrahman A., 2020. "Impact of Off-design operation on the effectiveness of a low-temperature compressed air energy storage system," Energy, Elsevier, vol. 197(C).
    4. Alsagri, Ali Sulaiman & Arabkoohsar, Ahmad & Khosravi, Milad & Alrobaian, Abdulrahman A., 2019. "Efficient and cost-effective district heating system with decentralized heat storage units, and triple-pipes," Energy, Elsevier, vol. 188(C).
    5. Moallemi, A. & Arabkoohsar, A. & Pujatti, F.J.P. & Valle, R.M. & Ismail, K.A.R., 2019. "Non-uniform temperature district heating system with decentralized heat storage units, a reliable solution for heat supply," Energy, Elsevier, vol. 167(C), pages 80-91.
    6. Farzaneh-Kord, V. & Khoshnevis, A.B. & Arabkoohsar, A. & Deymi-Dashtebayaz, M. & Aghili, M. & Khatib, M. & Kargaran, M. & Farzaneh-Gord, M., 2016. "Defining a technical criterion for economic justification of employing CHP technology in city gate stations," Energy, Elsevier, vol. 111(C), pages 389-401.
    7. Arabkoohsar, A. & Andresen, G.B., 2018. "A smart combination of a solar assisted absorption chiller and a power productive gas expansion unit for cogeneration of power and cooling," Renewable Energy, Elsevier, vol. 115(C), pages 489-500.
    8. Arabkoohsar, A. & Ismail, K.A.R. & Machado, L. & Koury, R.N.N., 2016. "Energy consumption minimization in an innovative hybrid power production station by employing PV and evacuated tube collector solar thermal systems," Renewable Energy, Elsevier, vol. 93(C), pages 424-441.
    9. Arabkoohsar, A. & Dremark-Larsen, M. & Lorentzen, R. & Andresen, G.B., 2017. "Subcooled compressed air energy storage system for coproduction of heat, cooling and electricity," Applied Energy, Elsevier, vol. 205(C), pages 602-614.
    10. Olfati, Mohammad & Bahiraei, Mehdi & Nazari, Saeed & Veysi, Farzad, 2020. "A comprehensive assessment of low-temperature preheating process in natural gas pressure reduction stations to better benefit from solar energy," Energy, Elsevier, vol. 209(C).
    11. Li, Chenghao & Zheng, Siyang & Chen, Yufeng & Zeng, Zhiyong, 2021. "Proposal and parametric analysis of an innovative natural gas pressure reduction and liquefaction system for efficient exergy recovery and LNG storage," Energy, Elsevier, vol. 223(C).
    12. Barone, Giovanni & Buonomano, Annamaria & Calise, Francesco & Forzano, Cesare & Palombo, Adolfo, 2019. "Energy recovery through natural gas turboexpander and solar collectors: Modelling and thermoeconomic optimization," Energy, Elsevier, vol. 183(C), pages 1211-1232.
    13. Hussam, Wisam K. & Rahbari, Hamid Reza & Arabkoohsar, Ahmad, 2020. "Off-design operation analysis of air-based high-temperature heat and power storage," Energy, Elsevier, vol. 196(C).
    14. Arabkoohsar, A. & Andresen, G.B., 2017. "Design and analysis of the novel concept of high temperature heat and power storage," Energy, Elsevier, vol. 126(C), pages 21-33.
    15. Farzaneh-Gord, Mahmood & Ghezelbash, Reza & Sadi, Meisam & Moghadam, Ali Jabari, 2016. "Integration of vertical ground-coupled heat pump into a conventional natural gas pressure drop station: Energy, economic and CO2 emission assessment," Energy, Elsevier, vol. 112(C), pages 998-1014.
    16. Alparslan Neseli, Mehmet & Ozgener, Onder & Ozgener, Leyla, 2017. "Thermo-mechanical exergy analysis of Marmara Eregli natural gas pressure reduction station (PRS): An application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 80-88.
    17. Chen, Shang & Arabkoohsar, Ahmad & Zhu, Tong & Nielsen, Mads Pagh, 2020. "Development of a micro-compressed air energy storage system model based on experiments," Energy, Elsevier, vol. 197(C).
    18. Tong, Jianfeng & Liu, Zhenxing & Zhang, Yong & Zheng, Xiujuan & Jin, Junyang, 2023. "Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load," Energy, Elsevier, vol. 282(C).
    19. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    20. Lu, Hongfang & Ma, Xin & Ma, Minda, 2021. "A hybrid multi-objective optimizer-based model for daily electricity demand prediction considering COVID-19," Energy, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:212:y:2020:i:c:s0360544220314973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.