IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v161y2018icp1115-1121.html
   My bibliography  Save this article

Improvement of thermal efficiency of wood pellet boilers through the refractory insulation in a combustion chamber and fire tube and baffle modification

Author

Listed:
  • Lee, Sang Yeol
  • Oh, Kwang Cheol
  • Lee, Chung Geon
  • Cho, La Hoon
  • Park, Sun Yong
  • Jeong, In Seon
  • Kim, Dae Hyun

Abstract

When wood pellets with high moisture content are used as fuel, the generation of tar during the combustion process increases. As a result, various problems occur, including decrease in thermal efficiency, increase in emission of polluting gases, and the need to clean the combustion chamber. To address this problem, this research applied refractory insulation where a fluid dynamics simulation indicated that thermal stresses most severely occurred, and cleaning was most often required. The fire-tube and baffle were then modified to compensate for the decrease in efficiency. A modified boiler was manufactured based on the simulation, and the experiment was performed. Under the no-tar condition, the thermal efficiencies of the control and modified boilers were found to be 92.20% and 90.63%, but once tar had accreted onto the combustion chamber walls, the modified boiler is more efficient at 82.55% compared to 81.79% for the control boiler. The changes in thermal efficiency due to the presence of tar were predicted using computational fluid dynamics simulations of no-tar and tar-accreted conditions, showing 91.83% and 85.25%, respectively, in the control and 92.05% and 87.18%, respectively, in the modified boiler, providing good agreement with the experimental results.

Suggested Citation

  • Lee, Sang Yeol & Oh, Kwang Cheol & Lee, Chung Geon & Cho, La Hoon & Park, Sun Yong & Jeong, In Seon & Kim, Dae Hyun, 2018. "Improvement of thermal efficiency of wood pellet boilers through the refractory insulation in a combustion chamber and fire tube and baffle modification," Energy, Elsevier, vol. 161(C), pages 1115-1121.
  • Handle: RePEc:eee:energy:v:161:y:2018:i:c:p:1115-1121
    DOI: 10.1016/j.energy.2018.07.188
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218314853
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sandberg, Jan & Karlsson, Christer & Fdhila, Rebei Bel, 2011. "A 7Â year long measurement period investigating the correlation of corrosion, deposit and fuel in a biomass fired circulated fluidized bed boiler," Applied Energy, Elsevier, vol. 88(1), pages 99-110, January.
    2. Roy, Murari Mohon & Dutta, Animesh & Corscadden, Kenny, 2013. "An experimental study of combustion and emissions of biomass pellets in a prototype pellet furnace," Applied Energy, Elsevier, vol. 108(C), pages 298-307.
    3. Kafle, Sagar & Euh, Seung Hee & Cho, Lahoon & Nam, Yun Seong & Oh, Kwang Cheol & Choi, Yun Sung & Oh, Jae-Heun & Kim, Dae Hyun, 2017. "Tar fouling reduction in wood pellet boiler using additives and study the effects of additives on the characteristics of pellets," Energy, Elsevier, vol. 129(C), pages 79-85.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghorashi, Seyed Amin & Khandelwal, Bhupendra, 2023. "Toward the ultra-clean and highly efficient biomass-fired heaters. A review," Renewable Energy, Elsevier, vol. 205(C), pages 631-647.
    2. Eo, Jae Won & Kim, Min Jun & Jeong, In Seon & Cho, LaHoon & Kim, Seok Jun & Park, Sunyong & Kim, Dae Hyun, 2021. "Enhancing thermal efficiency of wood pellet boilers by improving inlet air characteristics," Energy, Elsevier, vol. 228(C).
    3. Sungur, Bilal & Topaloglu, Bahattin, 2019. "An experimental investigation of the effect of smoke tube configuration on the performance and emission characteristics of pellet-fuelled boilers," Renewable Energy, Elsevier, vol. 143(C), pages 121-129.
    4. Mostafavi, Seyed Alireza & Shirazi, Mohammad, 2020. "Thermal modeling of indirect water heater in city gate station of natural gas to evaluate efficiency and fuel consumption," Energy, Elsevier, vol. 212(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eo, Jae Won & Kim, Min Jun & Jeong, In Seon & Cho, LaHoon & Kim, Seok Jun & Park, Sunyong & Kim, Dae Hyun, 2021. "Enhancing thermal efficiency of wood pellet boilers by improving inlet air characteristics," Energy, Elsevier, vol. 228(C).
    2. Ghorashi, Seyed Amin & Khandelwal, Bhupendra, 2023. "Toward the ultra-clean and highly efficient biomass-fired heaters. A review," Renewable Energy, Elsevier, vol. 205(C), pages 631-647.
    3. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Tong, Zi-Xiang & Li, Ming-Jia & He, Ya-Ling & Tan, Hou-Zhang, 2017. "Simulation of real time particle deposition and removal processes on tubes by coupled numerical method," Applied Energy, Elsevier, vol. 185(P2), pages 2181-2193.
    5. Lupiáñez, Carlos & Carmen Mayoral, M. & Díez, Luis I. & Pueyo, Eloy & Espatolero, Sergio & Manuel Andrés, J., 2016. "The role of limestone during fluidized bed oxy-combustion of coal and biomass," Applied Energy, Elsevier, vol. 184(C), pages 670-680.
    6. Zhou, Chunguang & Rosén, Christer & Engvall, Klas, 2016. "Biomass oxygen/steam gasification in a pressurized bubbling fluidized bed: Agglomeration behavior," Applied Energy, Elsevier, vol. 172(C), pages 230-250.
    7. Pronobis, Marek & Wejkowski, Robert & Kalisz, Sylwester & Ciukaj, Szymon, 2023. "Conversion of a pulverized coal boiler into a torrefied biomass boiler," Energy, Elsevier, vol. 262(PB).
    8. Cheng, Zhilong & Wang, Jingyu & Wei, Shangshang & Guo, Zhigang & Yang, Jian & Wang, Qiuwang, 2017. "Optimization of gaseous fuel injection for saving energy consumption and improving imbalance of heat distribution in iron ore sintering," Applied Energy, Elsevier, vol. 207(C), pages 230-242.
    9. Yin, Chungen, 2020. "Development in biomass preparation for suspension firing towards higher biomass shares and better boiler performance and fuel rangeability," Energy, Elsevier, vol. 196(C).
    10. Díaz-Ramírez, Maryori & Sebastián, Fernando & Royo, Javier & Rezeau, Adeline, 2014. "Influencing factors on NOX emission level during grate conversion of three pelletized energy crops," Applied Energy, Elsevier, vol. 115(C), pages 360-373.
    11. Stolarski, Mariusz J. & Stachowicz, Paweł & Dudziec, Paweł, 2022. "Wood pellet quality depending on dendromass species," Renewable Energy, Elsevier, vol. 199(C), pages 498-508.
    12. Horvat, Ivan & Dović, Damir & Filipović, Petar, 2021. "Numerical and experimental methods in development of the novel biomass combustion system concept for wood and agro pellets," Energy, Elsevier, vol. 231(C).
    13. Fournel, S. & Palacios, J.H. & Morissette, R. & Villeneuve, J. & Godbout, S. & Heitz, M. & Savoie, P., 2015. "Influence of biomass properties on technical and environmental performance of a multi-fuel boiler during on-farm combustion of energy crops," Applied Energy, Elsevier, vol. 141(C), pages 247-259.
    14. Izabella Maj, 2022. "Significance and Challenges of Poultry Litter and Cattle Manure as Sustainable Fuels: A Review," Energies, MDPI, vol. 15(23), pages 1-17, November.
    15. Araceli Regueiro & Lucie Jezerská & Raquel Pérez-Orozco & David Patiño & Jiří Zegzulka & Jan Nečas, 2019. "Viability Evaluation of Three Grass Biofuels: Experimental Study in a Small-Scale Combustor," Energies, MDPI, vol. 12(7), pages 1-19, April.
    16. Duong, Van Minh & Flener, Ursula & Hrbek, Jitka & Hofbauer, Hermann, 2022. "Emission characteristics from the combustion of Acacia Mangium in the automatic feeding pellet stove," Renewable Energy, Elsevier, vol. 186(C), pages 183-194.
    17. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "Mixed biomass pellets for thermal energy production: A review of combustion models," Applied Energy, Elsevier, vol. 127(C), pages 135-140.
    18. Kafle, Sagar & Euh, Seung Hee & Cho, Lahoon & Nam, Yun Seong & Oh, Kwang Cheol & Choi, Yun Sung & Oh, Jae-Heun & Kim, Dae Hyun, 2017. "Tar fouling reduction in wood pellet boiler using additives and study the effects of additives on the characteristics of pellets," Energy, Elsevier, vol. 129(C), pages 79-85.
    19. Jozami, Emiliano & Mele, Fernando D & Piastrellini, Roxana & Civit, Bárbara M & Feldman, Susana R, 2022. "Life cycle assessment of bioenergy from lignocellulosic herbaceous biomass: The case study of Spartina argentinensis," Energy, Elsevier, vol. 254(PA).
    20. Araceli Regueiro & Lucie Jezerská & David Patiño & Raquel Pérez-Orozco & Jan Nečas & Martin Žídek, 2017. "Experimental Study of the Viability of Low-Grade Biofuels in Small-Scale Appliances," Sustainability, MDPI, vol. 9(10), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:161:y:2018:i:c:p:1115-1121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.