IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v183y2019icp1211-1232.html
   My bibliography  Save this article

Energy recovery through natural gas turboexpander and solar collectors: Modelling and thermoeconomic optimization

Author

Listed:
  • Barone, Giovanni
  • Buonomano, Annamaria
  • Calise, Francesco
  • Forzano, Cesare
  • Palombo, Adolfo

Abstract

This paper presents a novel dynamic simulation model for the analysis of a hybrid turboexpander system coupled with innovative high-vacuum solar thermal collectors. The model is developed in MatLab and it is able to dynamically calculate the energy, exergy, environmental, and economic performances of the investigated system, by taking into account the hourly fluctuation of thermodynamic and economic parameters (e.g. electricity cost, natural gas temperature, and flow rates, etc.). In addition, a computer-based Design of Experiment (DoE) approach was implemented for achieving the optimal design of the proposed system.

Suggested Citation

  • Barone, Giovanni & Buonomano, Annamaria & Calise, Francesco & Forzano, Cesare & Palombo, Adolfo, 2019. "Energy recovery through natural gas turboexpander and solar collectors: Modelling and thermoeconomic optimization," Energy, Elsevier, vol. 183(C), pages 1211-1232.
  • Handle: RePEc:eee:energy:v:183:y:2019:i:c:p:1211-1232
    DOI: 10.1016/j.energy.2019.06.171
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219313039
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Mahabbati & A. Izady & M. Mousavi Baygi & K. Davary & S. M. Hasheminia, 2017. "Daily soil temperature modeling using ‘panel-data’ concept," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(8), pages 1385-1401, June.
    2. Farzaneh-Gord, M. & Ghezelbash, R. & Arabkoohsar, A. & Pilevari, L. & Machado, L. & Koury, R.N.N., 2015. "Employing geothermal heat exchanger in natural gas pressure drop station in order to decrease fuel consumption," Energy, Elsevier, vol. 83(C), pages 164-176.
    3. Ghezelbash, Reza & Farzaneh-Gord, Mahmood & Behi, Hamidreza & Sadi, Meisam & Khorramabady, Heshmatollah Shams, 2015. "Performance assessment of a natural gas expansion plant integrated with a vertical ground-coupled heat pump," Energy, Elsevier, vol. 93(P2), pages 2503-2517.
    4. Davide Borelli & Francesco Devia & Ermanno Lo Cascio & Corrado Schenone & Alessandro Spoladore, 2016. "Combined Production and Conversion of Energy in an Urban Integrated System," Energies, MDPI, vol. 9(10), pages 1-17, October.
    5. Buonomano, A. & Calise, F. & Palombo, A., 2013. "Solar heating and cooling systems by CPVT and ET solar collectors: A novel transient simulation model," Applied Energy, Elsevier, vol. 103(C), pages 588-606.
    6. Farzaneh-Gord, M. & Arabkoohsar, A. & Deymi Dasht-bayaz, M. & Farzaneh-Kord, V., 2012. "Feasibility of accompanying uncontrolled linear heater with solar system in natural gas pressure drop stations," Energy, Elsevier, vol. 41(1), pages 420-428.
    7. Poblete, Rodrigo & Cortes, Ernesto & Macchiavello, Juan & Bakit, José, 2018. "Factors influencing solar drying performance of the red algae Gracilaria chilensis," Renewable Energy, Elsevier, vol. 126(C), pages 978-986.
    8. Athienitis, Andreas K. & Barone, Giovanni & Buonomano, Annamaria & Palombo, Adolfo, 2018. "Assessing active and passive effects of façade building integrated photovoltaics/thermal systems: Dynamic modelling and simulation," Applied Energy, Elsevier, vol. 209(C), pages 355-382.
    9. Cascio, Ermanno Lo & Ma, Zhenjun & Schenone, Corrado, 2018. "Performance assessment of a novel natural gas pressure reduction station equipped with parabolic trough solar collectors," Renewable Energy, Elsevier, vol. 128(PA), pages 177-187.
    10. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    11. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo, 2018. "Solar heating and cooling systems by absorption and adsorption chillers driven by stationary and concentrating photovoltaic/thermal solar collectors: Modelling and simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1874-1908.
    12. Bisio, G., 1995. "Thermodynamic analysis of the use of pressure exergy of natural gas," Energy, Elsevier, vol. 20(2), pages 161-167.
    13. Kalogirou, Soteris A. & Karellas, Sotirios & Badescu, Viorel & Braimakis, Konstantinos, 2016. "Exergy analysis on solar thermal systems: A better understanding of their sustainability," Renewable Energy, Elsevier, vol. 85(C), pages 1328-1333.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanni Barone & Annamaria Buonomano & Cesare Forzano & Giovanni Francesco Giuzio & Adolfo Palombo, 2021. "Improving the Efficiency of Maritime Infrastructures through a BIM-Based Building Energy Modelling Approach: A Case Study in Naples, Italy," Energies, MDPI, vol. 14(16), pages 1-24, August.
    2. Barone, G. & Buonomano, A. & Forzano, C. & Palombo, A. & Russo, G., 2023. "The role of energy communities in electricity grid balancing: A flexible tool for smart grid power distribution optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    3. Olfati, Mohammad & Bahiraei, Mehdi & Nazari, Saeed & Veysi, Farzad, 2020. "A comprehensive assessment of low-temperature preheating process in natural gas pressure reduction stations to better benefit from solar energy," Energy, Elsevier, vol. 209(C).
    4. Li, Chenghao & Zheng, Siyang & Chen, Yufeng & Zeng, Zhiyong, 2021. "Proposal and parametric analysis of an innovative natural gas pressure reduction and liquefaction system for efficient exergy recovery and LNG storage," Energy, Elsevier, vol. 223(C).
    5. Dungang Zang & Fanghua Li & Abbas Ali Chandio, 2021. "Factors of Energy Poverty: Evidence from Tibet, China," Sustainability, MDPI, vol. 13(17), pages 1-20, August.
    6. Xiong, Yaxuan & Zhang, Aitonglu & Peng, Xiaodong & Yao, Chenhua & Wang, Nan & Wu, Yuting & Xu, Qian & Ma, Chongfang, 2023. "Investigation of a sole gas expander for gas pressure regulation and energy recovery," Energy, Elsevier, vol. 281(C).
    7. Barone, G. & Buonomano, A. & Palmieri, V. & Palombo, A., 2022. "A prototypal high-vacuum integrated collector storage solar water heater: Experimentation, design, and optimization through a new in-house 3D dynamic simulation model," Energy, Elsevier, vol. 238(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cascio, Ermanno Lo & Ma, Zhenjun & Schenone, Corrado, 2018. "Performance assessment of a novel natural gas pressure reduction station equipped with parabolic trough solar collectors," Renewable Energy, Elsevier, vol. 128(PA), pages 177-187.
    2. Arabkoohsar, A. & Farzaneh-Gord, M. & Deymi-Dashtebayaz, M. & Machado, L. & Koury, R.N.N., 2015. "A new design for natural gas pressure reduction points by employing a turbo expander and a solar heating set," Renewable Energy, Elsevier, vol. 81(C), pages 239-250.
    3. Lo Cascio, Ermanno & De Schutter, Bart & Schenone, Corrado, 2018. "Flexible energy harvesting from natural gas distribution networks through line-bagging," Applied Energy, Elsevier, vol. 229(C), pages 253-263.
    4. Barone, G. & Buonomano, A. & Calise, F. & Forzano, C. & Palombo, A., 2019. "Building to vehicle to building concept toward a novel zero energy paradigm: Modelling and case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 625-648.
    5. Li, Chenghao & Zheng, Siyang & Chen, Yufeng & Zeng, Zhiyong, 2021. "Proposal and parametric analysis of an innovative natural gas pressure reduction and liquefaction system for efficient exergy recovery and LNG storage," Energy, Elsevier, vol. 223(C).
    6. Giovanni Barone & Annamaria Buonomano & Cesare Forzano & Adolfo Palombo, 2019. "Building Energy Performance Analysis: An Experimental Validation of an In-House Dynamic Simulation Tool through a Real Test Room," Energies, MDPI, vol. 12(21), pages 1-39, October.
    7. Lo Cascio, Ermanno & Von Friesen, Marc Puig & Schenone, Corrado, 2018. "Optimal retrofitting of natural gas pressure reduction stations for energy recovery," Energy, Elsevier, vol. 153(C), pages 387-399.
    8. Xiong, Yaxuan & An, Shuo & Xu, Peng & Ding, Yulong & Li, Chuan & Zhang, Qunli & Chen, Hongbing, 2018. "A novel expander-depending natural gas pressure regulation configuration: Performance analysis," Applied Energy, Elsevier, vol. 220(C), pages 21-35.
    9. Farzaneh-Gord, Mahmood & Ghezelbash, Reza & Sadi, Meisam & Moghadam, Ali Jabari, 2016. "Integration of vertical ground-coupled heat pump into a conventional natural gas pressure drop station: Energy, economic and CO2 emission assessment," Energy, Elsevier, vol. 112(C), pages 998-1014.
    10. Alparslan Neseli, Mehmet & Ozgener, Onder & Ozgener, Leyla, 2017. "Thermo-mechanical exergy analysis of Marmara Eregli natural gas pressure reduction station (PRS): An application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 80-88.
    11. Herrando, María & Pantaleo, Antonio M. & Wang, Kai & Markides, Christos N., 2019. "Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications," Renewable Energy, Elsevier, vol. 143(C), pages 637-647.
    12. Buonomano, A. & Forzano, C. & Kalogirou, S.A. & Palombo, A., 2019. "Building-façade integrated solar thermal collectors: Energy-economic performance and indoor comfort simulation model of a water based prototype for heating, cooling, and DHW production," Renewable Energy, Elsevier, vol. 137(C), pages 20-36.
    13. Herrando, M. & Coca-Ortegón, A. & Guedea, I. & Fueyo, N., 2023. "Experimental validation of a solar system based on hybrid photovoltaic-thermal collectors and a reversible heat pump for the energy provision in non-residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    14. María Herrando & Alba Ramos, 2022. "Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review," Energies, MDPI, vol. 15(9), pages 1-28, April.
    15. Inayat, Abrar & Raza, Mohsin, 2019. "District cooling system via renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 360-373.
    16. Farzaneh-Kord, V. & Khoshnevis, A.B. & Arabkoohsar, A. & Deymi-Dashtebayaz, M. & Aghili, M. & Khatib, M. & Kargaran, M. & Farzaneh-Gord, M., 2016. "Defining a technical criterion for economic justification of employing CHP technology in city gate stations," Energy, Elsevier, vol. 111(C), pages 389-401.
    17. Arabkoohsar, A. & Andresen, G.B., 2018. "A smart combination of a solar assisted absorption chiller and a power productive gas expansion unit for cogeneration of power and cooling," Renewable Energy, Elsevier, vol. 115(C), pages 489-500.
    18. Arabkoohsar, A. & Ismail, K.A.R. & Machado, L. & Koury, R.N.N., 2016. "Energy consumption minimization in an innovative hybrid power production station by employing PV and evacuated tube collector solar thermal systems," Renewable Energy, Elsevier, vol. 93(C), pages 424-441.
    19. Olfati, Mohammad & Bahiraei, Mehdi & Nazari, Saeed & Veysi, Farzad, 2020. "A comprehensive assessment of low-temperature preheating process in natural gas pressure reduction stations to better benefit from solar energy," Energy, Elsevier, vol. 209(C).
    20. Szabó, Gábor L. & Kalmár, Ferenc, 2019. "Investigation of energy and exergy performances of radiant cooling systems in buildings – A design approach," Energy, Elsevier, vol. 185(C), pages 449-462.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:183:y:2019:i:c:p:1211-1232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.