IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v202y2024ics1364032124004283.html
   My bibliography  Save this article

Modelling centrifugal-granulation-assisted thermal energy recovery from molten slag at high temperatures

Author

Listed:
  • Wu, Junjun
  • Wang, Hong
  • Zhu, Xun
  • Liao, Qiang

Abstract

It remains a longstanding challenge to recover the waste heat from molten slags in pursuit of lower energy and carbon intensity in the metallurgical industry. To tap the heat from molten slag, the enabling technology i.e. centrifugal-granulation-assisted thermal energy recovery (CGATER) has been proposed and evolved from the laboratory concept into technological embodiment. Further development and deployment of CGATER necessitate a thorough, informative understanding of the multiscale CGATER physics; this is often enabled by modelling. Yet, the availability of informative CGATER physics is very limited due to the insufficiency and complexity of CGATER models. It is thus nontrivial to understand the current CGATER models and most importantly, the challenges and opportunities in future CGATER development. Herein, we first introduce the fundamental physics of CGATER. Second, we provide an overview of the CGATER models in the recent decade. Finally, we further analyze the missing pieces in current CGATER models and suggest future development of the CGATER models. According to the authors’ opinion, revisiting current CGATER models is essential. In the future, joint efforts from academia and industry are advocated to develop multiscale, multiphase CGATER models which are expected to accelerate the large-scale implementation of CGATER in the metallurgical industry.

Suggested Citation

  • Wu, Junjun & Wang, Hong & Zhu, Xun & Liao, Qiang, 2024. "Modelling centrifugal-granulation-assisted thermal energy recovery from molten slag at high temperatures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124004283
    DOI: 10.1016/j.rser.2024.114702
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124004283
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114702?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124004283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.