IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i4p560-d344008.html
   My bibliography  Save this article

An Efficient Micro Grid Optimization Theory

Author

Listed:
  • Sooyoung Jung

    (Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea)

  • Yong Tae Yoon

    (Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea)

  • Jun-Ho Huh

    (Department of Data Informatics, Korea Maritime and Ocean University, Busan 49112, Korea)

Abstract

A Micro Grid is an aggregate of many small-scale distributed energy resources (DERs); loads and can be operated independently or together with the existing power grid as a local power grid. The operator of such a grid takes charge of the energy supply and consumption of these resources and loads available in the grid. Meanwhile, the system operator of the grid considers the entire Micro Grid system to be a single load or a generator and assigns the responsibility of its internal management to the operator. The power production from a passive production resource is largely influenced by external environmental factors such as weather conditions, rather than operating conditions. Thus, this study conducted simulations for the cases where four kinds of conditional expressions had not been applied at all or one of them had been applied to compare and evaluate the effectiveness of each expression. As a result, the conditional equations were found to be effective when attempting to optimize the Micro Grids efficiently.

Suggested Citation

  • Sooyoung Jung & Yong Tae Yoon & Jun-Ho Huh, 2020. "An Efficient Micro Grid Optimization Theory," Mathematics, MDPI, vol. 8(4), pages 1-21, April.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:560-:d:344008
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/4/560/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/4/560/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2018. "Optimal operation of an energy management system for a grid-connected smart building considering photovoltaics’ uncertainty and stochastic electric vehicles’ driving schedule," Applied Energy, Elsevier, vol. 210(C), pages 1188-1206.
    2. Chapaloglou, Spyridon & Nesiadis, Athanasios & Iliadis, Petros & Atsonios, Konstantinos & Nikolopoulos, Nikos & Grammelis, Panagiotis & Yiakopoulos, Christos & Antoniadis, Ioannis & Kakaras, Emmanuel, 2019. "Smart energy management algorithm for load smoothing and peak shaving based on load forecasting of an island’s power system," Applied Energy, Elsevier, vol. 238(C), pages 627-642.
    3. Nge, Chee Lim & Ranaweera, Iromi U. & Midtgård, Ole-Morten & Norum, Lars, 2019. "A real-time energy management system for smart grid integrated photovoltaic generation with battery storage," Renewable Energy, Elsevier, vol. 130(C), pages 774-785.
    4. Eissa, M.M., 2019. "Developing incentive demand response with commercial energy management system (CEMS) based on diffusion model, smart meters and new communication protocol," Applied Energy, Elsevier, vol. 236(C), pages 273-292.
    5. Gamarra, Carlos & Guerrero, Josep M., 2015. "Computational optimization techniques applied to microgrids planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 413-424.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaijun Peng & Jieqing Tan & Li Zhang, 2023. "Polynomial-Based Non-Uniform Ternary Interpolation Surface Subdivision on Quadrilateral Mesh," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    2. Norbert Njuanyi Koneh & Jae-Sub Ko & Dae-Kyong Kim, 2022. "Simulations to Eliminate Backflow Power in an Isolated Three-Port Bidirectional DC–DC Converter," Energies, MDPI, vol. 16(1), pages 1-14, December.
    3. Alexandros Paspatis & Konstantinos Fiorentzis & Yiannis Katsigiannis & Emmanuel Karapidakis, 2022. "Smart Campus Microgrids towards a Sustainable Energy Transition—The Case Study of the Hellenic Mediterranean University in Crete," Mathematics, MDPI, vol. 10(7), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    2. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    3. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    4. Banguero, Edison & Correcher, Antonio & Pérez-Navarro, Ángel & García, Emilio & Aristizabal, Andrés, 2020. "Diagnosis of a battery energy storage system based on principal component analysis," Renewable Energy, Elsevier, vol. 146(C), pages 2438-2449.
    5. Xiaohan Fang & Jinkuan Wang & Guanru Song & Yinghua Han & Qiang Zhao & Zhiao Cao, 2019. "Multi-Agent Reinforcement Learning Approach for Residential Microgrid Energy Scheduling," Energies, MDPI, vol. 13(1), pages 1-26, December.
    6. Al-Falahi, Monaaf D.A. & Jayasinghe, Shantha D.G. & Enshaei, Hossein, 2019. "Hybrid algorithm for optimal operation of hybrid energy systems in electric ferries," Energy, Elsevier, vol. 187(C).
    7. Sedghi, Mahdi & Ahmadian, Ali & Aliakbar-Golkar, Masoud, 2016. "Assessment of optimization algorithms capability in distribution network planning: Review, comparison and modification techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 415-434.
    8. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    9. Thomas Sachs & Anna Gründler & Milos Rusic & Gilbert Fridgen, 2019. "Framing Microgrid Design from a Business and Information Systems Engineering Perspective," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(6), pages 729-744, December.
    10. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    11. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    12. Talaat, M. & Hatata, A.Y. & Alsayyari, Abdulaziz S. & Alblawi, Adel, 2020. "A smart load management system based on the grasshopper optimization algorithm using the under-frequency load shedding approach," Energy, Elsevier, vol. 190(C).
    13. Lynch, Muireann Á. & Nolan, Sheila & Devine, Mel T. & O’Malley, Mark, 2019. "The impacts of demand response participation in capacity markets," Applied Energy, Elsevier, vol. 250(C), pages 444-451.
    14. Ahsan, Syed M. & Khan, Hassan A. & Hassan, Naveed-ul & Arif, Syed M. & Lie, Tek-Tjing, 2020. "Optimized power dispatch for solar photovoltaic-storage system with multiple buildings in bilateral contracts," Applied Energy, Elsevier, vol. 273(C).
    15. Mohseni, Soheil & Brent, Alan C. & Burmester, Daniel, 2020. "A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid," Applied Energy, Elsevier, vol. 259(C).
    16. Yu Huang & Weiting Zhang & Kai Yang & Weizhen Hou & Yiran Huang, 2019. "An Optimal Scheduling Method for Multi-Energy Hub Systems Using Game Theory," Energies, MDPI, vol. 12(12), pages 1-20, June.
    17. Igyso Zafeiratou & Ionela Prodan & Laurent Lefévre, 2021. "A Hierarchical Control Approach for Power Loss Minimization and Optimal Power Flow within a Meshed DC Microgrid," Energies, MDPI, vol. 14(16), pages 1-27, August.
    18. Lange, Christopher & Rueß, Alexandra & Nuß, Andreas & Öchsner, Richard & März, Martin, 2020. "Dimensioning battery energy storage systems for peak shaving based on a real-time control algorithm," Applied Energy, Elsevier, vol. 280(C).
    19. Thomas, Dimitrios & D’Hoop, Gaspard & Deblecker, Olivier & Genikomsakis, Konstantinos N. & Ioakimidis, Christos S., 2020. "An integrated tool for optimal energy scheduling and power quality improvement of a microgrid under multiple demand response schemes," Applied Energy, Elsevier, vol. 260(C).
    20. Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:560-:d:344008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.