IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v200y2020ics0360544220306708.html
   My bibliography  Save this article

Arrangement of clustered straight-bladed wind turbines

Author

Listed:
  • Zheng, H.-D.
  • Zheng, X.Y.
  • Zhao, S.X.

Abstract

Recent studies have revealed that the interactions between clustered vertical-axis wind turbines (VAWTs) can help improve the total power production. Thus this study compares four typical arrangements (I, II, III, IV) of multi-turbines placed in close proximity to investigate their efficiencies of power generation. A series of computational fluid dynamic (CFD) simulations, based on two-dimensional (2D) unsteady Reynolds-averaged Navier-Stokes (URANS) theory, are performed for all four arrangements to achieve the maximum average power coefficient. First, the accuracy of the CFD model is validated against the field test results of 1.2 kW Windspire VAWT in reference. Then the performance of each arrangement at different proximities is investigated. It is found that the constraint effect in the lateral direction and the upstream turbines’ blockage effect can be triggered at a certain separation distance, which greatly affects the average power generation. In most cases, the 3-VAWT cluster is of higher efficiency than the 2-VAWT cluster in terms of the average power coefficient. The developed 3-VAWT cluster (Arrangement IV) has an average power coefficient up to 11.1% higher than that of an isolated turbine. In order to demonstrate the useful guidance of this study in practical applications, the performance of a newly developed wind-solar-aquaculture (WSA) system with multi-VAWTs is appraised. For the foundation of this system with restricted space, employment of the 3-VAWT cluster (Arrangement III) will yield yearly energy generation greater than that by three isolated turbines.

Suggested Citation

  • Zheng, H.-D. & Zheng, X.Y. & Zhao, S.X., 2020. "Arrangement of clustered straight-bladed wind turbines," Energy, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:energy:v:200:y:2020:i:c:s0360544220306708
    DOI: 10.1016/j.energy.2020.117563
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220306708
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117563?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zanforlin, Stefania & Nishino, Takafumi, 2016. "Fluid dynamic mechanisms of enhanced power generation by closely spaced vertical axis wind turbines," Renewable Energy, Elsevier, vol. 99(C), pages 1213-1226.
    2. Howell, Robert & Qin, Ning & Edwards, Jonathan & Durrani, Naveed, 2010. "Wind tunnel and numerical study of a small vertical axis wind turbine," Renewable Energy, Elsevier, vol. 35(2), pages 412-422.
    3. Danao, Louis Angelo & Edwards, Jonathan & Eboibi, Okeoghene & Howell, Robert, 2014. "A numerical investigation into the influence of unsteady wind on the performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 116(C), pages 111-124.
    4. Lam, H.F. & Peng, H.Y., 2017. "Measurements of the wake characteristics of co- and counter-rotating twin H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 131(C), pages 13-26.
    5. Cheng, Zhengshun & Madsen, Helge Aagaard & Gao, Zhen & Moan, Torgeir, 2017. "Effect of the number of blades on the dynamics of floating straight-bladed vertical axis wind turbines," Renewable Energy, Elsevier, vol. 101(C), pages 1285-1298.
    6. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment," Renewable Energy, Elsevier, vol. 107(C), pages 373-385.
    7. Cheng, Zhengshun & Madsen, Helge Aagaard & Gao, Zhen & Moan, Torgeir, 2017. "A fully coupled method for numerical modeling and dynamic analysis of floating vertical axis wind turbines," Renewable Energy, Elsevier, vol. 107(C), pages 604-619.
    8. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines," Energy, Elsevier, vol. 180(C), pages 838-857.
    9. Balduzzi, Francesco & Bianchini, Alessandro & Maleci, Riccardo & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Critical issues in the CFD simulation of Darrieus wind turbines," Renewable Energy, Elsevier, vol. 85(C), pages 419-435.
    10. Xiangyuan Zheng & Huadong Zheng & Yu Lei & Yi Li & Wei Li, 2020. "An Offshore Floating Wind–Solar–Aquaculture System: Concept Design and Extreme Response in Survival Conditions," Energies, MDPI, vol. 13(3), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Zhongyun & Chen, Jian & Li, Chun, 2023. "Research on the adaptability of dynamic pitch control strategies on H-type VAWT close-range arrays by simulation study," Renewable Energy, Elsevier, vol. 218(C).
    2. Yoshifumi Jodai & Yutaka Hara, 2021. "Wind Tunnel Experiments on Interaction between Two Closely Spaced Vertical-Axis Wind Turbines in Side-by-Side Arrangement," Energies, MDPI, vol. 14(23), pages 1-19, November.
    3. Yoshifumi Jodai & Yutaka Hara, 2023. "Wind-Tunnel Experiments on the Interactions among a Pair/Trio of Closely Spaced Vertical-Axis Wind Turbines," Energies, MDPI, vol. 16(3), pages 1-27, January.
    4. Manuel Viqueira-Moreira & Esteban Ferrer, 2020. "Insights into the Aeroacoustic Noise Generation for Vertical Axis Turbines in Close Proximity," Energies, MDPI, vol. 13(16), pages 1-18, August.
    5. Zheng, Hua-Dong & Wang, Xian-Feng & Liu, Chen-Xi & Wang, Zhen & Wu, Bin, 2022. "Nonlinear seismic performance of a large-scale vertical-axis wind turbine under wind and earthquake action," Renewable Energy, Elsevier, vol. 200(C), pages 24-36.
    6. Jeffrey E. Silva & Louis Angelo M. Danao, 2021. "Varying VAWT Cluster Configuration and the Effect on Individual Rotor and Overall Cluster Performance," Energies, MDPI, vol. 14(6), pages 1-22, March.
    7. Ji Hao Zhang & Fue-Sang Lien & Eugene Yee, 2022. "Investigations of Vertical-Axis Wind-Turbine Group Synergy Using an Actuator Line Model," Energies, MDPI, vol. 15(17), pages 1-22, August.
    8. Jiang, Yichen & Liu, Shijie & Zao, Peidong & Yu, Yanwei & Zou, Li & Liu, Liqin & Li, Jiawen, 2022. "Experimental evaluation of a tree-shaped quad-rotor wind turbine on power output controllability and survival shutdown capability," Applied Energy, Elsevier, vol. 309(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Kuang, Limin & Katsuchi, Hiroshi & Zhou, Dai & Chen, Yaoran & Han, Zhaolong & Zhang, Kai & Wang, Jiaqi & Bao, Yan & Cao, Yong & Liu, Yijie, 2023. "Strategy for mitigating wake interference between offshore vertical-axis wind turbines: Evaluation of vertically staggered arrangement," Applied Energy, Elsevier, vol. 351(C).
    3. Ni, Lulu & Miao, Weipao & Li, Chun & Liu, Qingsong, 2021. "Impacts of Gurney flap and solidity on the aerodynamic performance of vertical axis wind turbines in array configurations," Energy, Elsevier, vol. 215(PA).
    4. Peng, H.Y. & Liu, M.N. & Liu, H.J. & Lin, K., 2022. "Optimization of twin vertical axis wind turbines through large eddy simulations and Taguchi method," Energy, Elsevier, vol. 240(C).
    5. Barnes, Andrew & Hughes, Ben, 2019. "Determining the impact of VAWT farm configurations on power output," Renewable Energy, Elsevier, vol. 143(C), pages 1111-1120.
    6. Zanforlin, Stefania & Deluca, Stefano, 2018. "Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed Vertical Axis Wind Turbines," Energy, Elsevier, vol. 148(C), pages 179-195.
    7. Lidong Zhang & Kaiqi Zhu & Junwei Zhong & Ling Zhang & Tieliu Jiang & Shaohua Li & Zhongbin Zhang, 2018. "Numerical Investigations of the Effects of the Rotating Shaft and Optimization of Urban Vertical Axis Wind Turbines," Energies, MDPI, vol. 11(7), pages 1-25, July.
    8. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
    9. Ji Hao Zhang & Fue-Sang Lien & Eugene Yee, 2022. "Investigations of Vertical-Axis Wind-Turbine Group Synergy Using an Actuator Line Model," Energies, MDPI, vol. 15(17), pages 1-22, August.
    10. Lei, Hang & Zhou, Dai & Bao, Yan & Chen, Caiyong & Ma, Ning & Han, Zhaolong, 2017. "Numerical simulations of the unsteady aerodynamics of a floating vertical axis wind turbine in surge motion," Energy, Elsevier, vol. 127(C), pages 1-17.
    11. Kun Wang & Li Zou & Aimin Wang & Peidong Zhao & Yichen Jiang, 2020. "Wind Tunnel Study on Wake Instability of Twin H-Rotor Vertical-Axis Turbines," Energies, MDPI, vol. 13(17), pages 1-18, August.
    12. Hassan, Syed Saddam ul & Javaid, M. Tariq & Rauf, Umar & Nasir, Sheharyar & Shahzad, Aamer & Salamat, Shuaib, 2023. "Systematic investigation of power enhancement of Vertical Axis Wind Turbines using bio-inspired leading edge tubercles," Energy, Elsevier, vol. 270(C).
    13. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    14. Lakshmi Srinivasan & Nishanth Ram & Sudharshan Bharatwaj Rengarajan & Unnikrishnan Divakaran & Akram Mohammad & Ratna Kishore Velamati, 2023. "Effect of Macroscopic Turbulent Gust on the Aerodynamic Performance of Vertical Axis Wind Turbine," Energies, MDPI, vol. 16(5), pages 1-24, February.
    15. Rezaeiha, Abdolrahim & Micallef, Daniel, 2021. "Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model," Renewable Energy, Elsevier, vol. 179(C), pages 859-876.
    16. Ma, Ning & Lei, Hang & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhang, Kai & Zhou, Lei & Chen, Caiyong, 2018. "Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio," Energy, Elsevier, vol. 150(C), pages 236-252.
    17. Wong, Kok Hoe & Chong, Wen Tong & Poh, Sin Chew & Shiah, Yui-Chuin & Sukiman, Nazatul Liana & Wang, Chin-Tsan, 2018. "3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 32-55.
    18. Peng, H.Y. & Han, Z.D. & Liu, H.J. & Lin, K. & Lam, H.F., 2020. "Assessment and optimization of the power performance of twin vertical axis wind turbines via numerical simulations," Renewable Energy, Elsevier, vol. 147(P1), pages 43-54.
    19. Cinzia Rainone & Danilo De Siero & Luigi Iuspa & Antonio Viviani & Giuseppe Pezzella, 2023. "A Numerical Procedure for Variable-Pitch Law Formulation of Vertical-Axis Wind Turbines," Energies, MDPI, vol. 16(1), pages 1-20, January.
    20. Atlaschian, Omid & Metzger, M., 2021. "Numerical model of vertical axis wind turbine performance in realistic gusty wind conditions," Renewable Energy, Elsevier, vol. 165(P1), pages 211-223.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:200:y:2020:i:c:s0360544220306708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.