IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v200y2022icp24-36.html
   My bibliography  Save this article

Nonlinear seismic performance of a large-scale vertical-axis wind turbine under wind and earthquake action

Author

Listed:
  • Zheng, Hua-Dong
  • Wang, Xian-Feng
  • Liu, Chen-Xi
  • Wang, Zhen
  • Wu, Bin

Abstract

Vertical-axis wind turbines (VAWTs) are being regarded as a complementary technology to the more commercially used horizontal-axis wind turbines (HAWTs). This paper investigates the dynamic response and the collapse pattern of a 1 MW VAWT under the wind and earthquake action. A refined numerical model of the VAWT with three straight blades is created using the finite element (FE) method, and the combined kinematic-isotropic material hardening model is adopted to describe the material nonlinear behavior of the turbine tower. This FE modeling method is validated against a nonlinear pushover test. Two earthquake sets that contain 20 near- and 20 far-field earthquakes are selected as the inputs, and the aerodynamic loads are also calculated for the turbine under the rated wind speed. Time-history dynamic analyses are conducted to compare the nonlinear seismic performance of the operational turbine under the selected earthquakes. The results show that the average fore-aft and side-side displacements at the tower top excited by the near-field earthquakes are 35.3% and 20.1% larger than those excited by the far-field earthquakes. Additionally, the near-field earthquakes are prone to cause the yielding, buckling and collapse of the operational wind turbine. The collapse analyses indicate that the exact failure locations of the tower cannot be predicted by the 1st-order mode pushover analysis, and the failure height triggered by the near-field earthquakes is usually higher than that by the far-field earthquakes.

Suggested Citation

  • Zheng, Hua-Dong & Wang, Xian-Feng & Liu, Chen-Xi & Wang, Zhen & Wu, Bin, 2022. "Nonlinear seismic performance of a large-scale vertical-axis wind turbine under wind and earthquake action," Renewable Energy, Elsevier, vol. 200(C), pages 24-36.
  • Handle: RePEc:eee:renene:v:200:y:2022:i:c:p:24-36
    DOI: 10.1016/j.renene.2022.09.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122014562
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.09.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, H.-D. & Zheng, X.Y. & Zhao, S.X., 2020. "Arrangement of clustered straight-bladed wind turbines," Energy, Elsevier, vol. 200(C).
    2. Meng, Jiayao & Dai, Kaoshan & Zhao, Zhi & Mao, Zhenxi & Camara, Alfredo & Zhang, Songhan & Mei, Zhu, 2020. "Study on the aerodynamic damping for the seismic analysis of wind turbines in operation," Renewable Energy, Elsevier, vol. 159(C), pages 1224-1242.
    3. Mo, Renjie & Cao, Renjing & Liu, Minghou & Li, Miao, 2021. "Effect of ground motion directionality on seismic dynamic responses of monopile offshore wind turbines," Renewable Energy, Elsevier, vol. 175(C), pages 179-199.
    4. Yang, Yang & Bashir, Musa & Michailides, Constantine & Mei, Xuan & Wang, Jin & Li, Chun, 2021. "Coupled analysis of a 10 MW multi-body floating offshore wind turbine subjected to tendon failures," Renewable Energy, Elsevier, vol. 176(C), pages 89-105.
    5. Asareh, Mohammad-Amin & Schonberg, William & Volz, Jeffery, 2016. "Effects of seismic and aerodynamic load interaction on structural dynamic response of multi-megawatt utility scale horizontal axis wind turbines," Renewable Energy, Elsevier, vol. 86(C), pages 49-58.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mo, Renjie & Cao, Renjing & Liu, Minghou & Li, Miao, 2021. "Effect of ground motion directionality on seismic dynamic responses of monopile offshore wind turbines," Renewable Energy, Elsevier, vol. 175(C), pages 179-199.
    2. Chenyang Yuan & Yunfei Xie & Jing Li & Weifeng Bai & Haohao Li, 2022. "Influence of the Number of Ground Motions on Fragility Analysis of 5 MW Wind Turbines Subjected to Aerodynamic and Seismic Loads Interaction," Energies, MDPI, vol. 15(6), pages 1-18, March.
    3. Pan, Lin & Xiong, Yong & Zhu, Ze & Wang, Leichong, 2022. "Research on variable pitch control strategy of direct-driven offshore wind turbine using KELM wind speed soft sensor," Renewable Energy, Elsevier, vol. 184(C), pages 1002-1017.
    4. Renjie Mo & Haigui Kang & Miao Li & Xuanlie Zhao, 2017. "Seismic Fragility Analysis of Monopile Offshore Wind Turbines under Different Operational Conditions," Energies, MDPI, vol. 10(7), pages 1-22, July.
    5. Liu, Yingzhou & Li, Xin & Shi, Wei & Wang, Wenhua & Jiang, Zhiyu, 2024. "Vibration control of a monopile offshore wind turbines under recorded seismic waves," Renewable Energy, Elsevier, vol. 226(C).
    6. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    7. Baolong Liu & Jianxing Yu, 2022. "Effect of Mooring Parameters on Dynamic Responses of a Semi-Submersible Floating Offshore Wind Turbine," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    8. Yoshifumi Jodai & Yutaka Hara, 2023. "Wind-Tunnel Experiments on the Interactions among a Pair/Trio of Closely Spaced Vertical-Axis Wind Turbines," Energies, MDPI, vol. 16(3), pages 1-27, January.
    9. Renqiang Xi & Piguang Wang & Xiuli Du & Chengshun Xu & Junbo Jia, 2020. "Evaluation of an Uncoupled Method for Analyzing the Seismic Response of Wind Turbines Excited by Wind and Earthquake Loads," Energies, MDPI, vol. 13(15), pages 1-27, July.
    10. He, Kunpeng & Ye, Jianhong, 2023. "Seismic dynamics of offshore wind turbine-seabed foundation: Insights from a numerical study," Renewable Energy, Elsevier, vol. 205(C), pages 200-221.
    11. Sakaris, Christos S. & Yang, Yang & Bashir, Musa & Michailides, Constantine & Wang, Jin & Sakellariou, John S. & Li, Chun, 2021. "Structural health monitoring of tendons in a multibody floating offshore wind turbine under varying environmental and operating conditions," Renewable Energy, Elsevier, vol. 179(C), pages 1897-1914.
    12. Li, Zhiguo & Gao, Zhiying & Chen, Yongyan & Zhang, Liru & Wang, Jianwen, 2022. "A novel time-variant prediction model for megawatt flexible wind turbines and its application in NTM and ECD conditions," Renewable Energy, Elsevier, vol. 196(C), pages 1158-1169.
    13. Mohammad Barooni & Turaj Ashuri & Deniz Velioglu Sogut & Stephen Wood & Shiva Ghaderpour Taleghani, 2022. "Floating Offshore Wind Turbines: Current Status and Future Prospects," Energies, MDPI, vol. 16(1), pages 1-28, December.
    14. Yang, Yang & Bashir, Musa & Li, Chun & Michailides, Constantine & Wang, Jin, 2020. "Mitigation of coupled wind-wave-earthquake responses of a 10 MW fixed-bottom offshore wind turbine," Renewable Energy, Elsevier, vol. 157(C), pages 1171-1184.
    15. Jiang, Yichen & Liu, Shijie & Zao, Peidong & Yu, Yanwei & Zou, Li & Liu, Liqin & Li, Jiawen, 2022. "Experimental evaluation of a tree-shaped quad-rotor wind turbine on power output controllability and survival shutdown capability," Applied Energy, Elsevier, vol. 309(C).
    16. Yoshifumi Jodai & Yutaka Hara, 2021. "Wind Tunnel Experiments on Interaction between Two Closely Spaced Vertical-Axis Wind Turbines in Side-by-Side Arrangement," Energies, MDPI, vol. 14(23), pages 1-19, November.
    17. Yang, Yang & Shi, Zhaobin & Fu, Jianbin & Ma, Lu & Yu, Jie & Fang, Fang & Li, Chun & Chen, Shunhua & Yang, Wenxian, 2023. "Effects of tidal turbine number on the performance of a 10 MW-class semi-submersible integrated floating wind-current system," Energy, Elsevier, vol. 285(C).
    18. Xu, Zhongyun & Chen, Jian & Li, Chun, 2023. "Research on the adaptability of dynamic pitch control strategies on H-type VAWT close-range arrays by simulation study," Renewable Energy, Elsevier, vol. 218(C).
    19. Chen, Chuan & Zhou, Jing-wei & Li, Fengming & Zhai, Endi, 2022. "Stall-induced vibrations analysis and mitigation of a wind turbine rotor at idling state: Theory and experiment," Renewable Energy, Elsevier, vol. 187(C), pages 710-727.
    20. Alberto Maria Avossa & Cristoforo Demartino & Pasquale Contestabile & Francesco Ricciardelli & Diego Vicinanza, 2017. "Some Results on the Vulnerability Assessment of HAWTs Subjected to Wind and Seismic Actions," Sustainability, MDPI, vol. 9(9), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:200:y:2022:i:c:p:24-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.