IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v130y2014icp543-551.html
   My bibliography  Save this article

Numerical investigation of heat transfer characteristics in utility boilers of oxy-coal combustion

Author

Listed:
  • Hu, Yukun
  • Li, Hailong
  • Yan, Jinyue

Abstract

Oxy-coal combustion has different flue gas composition from the conventional air-coal combustion. The different composition further results in different properties, such as the absorption coefficient, emissivity, and density, which can directly affect the heat transfer in both radiation and convection zones of utility boilers. This paper numerically studied a utility boiler of oxy-coal combustion and compares with air-coal combustion in terms of flame profile and heat transferred through boiler side walls in order to understand the effects of different operating conditions on oxy-coal boiler retrofitting and design. Based on the results, it was found that around 33vol% of effective O2 concentration ([O2]effective) the highest flame temperature and total heat transferred through boiler side walls in the oxy-coal combustion case match to those in the air-coal combustion case most; therefore, the 33vol% of [O2]effective could result in the minimal change for the oxy-coal combustion retrofitting of the existing boiler. In addition, the increase of the moisture content in the flue gas has little impact on the flame temperature, but results in a higher surface incident radiation on boiler side walls. The area of heat exchangers in the boiler was also investigated regarding retrofitting. If boiler operates under a higher [O2]effective, to rebalance the load of each heat exchanger in the boiler, the feed water temperature after economizer can be reduced or part of superheating surfaces can be moved into the radiation zone to replace part of the evaporators.

Suggested Citation

  • Hu, Yukun & Li, Hailong & Yan, Jinyue, 2014. "Numerical investigation of heat transfer characteristics in utility boilers of oxy-coal combustion," Applied Energy, Elsevier, vol. 130(C), pages 543-551.
  • Handle: RePEc:eee:appene:v:130:y:2014:i:c:p:543-551
    DOI: 10.1016/j.apenergy.2014.03.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914002694
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.03.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Álvarez, L. & Yin, C. & Riaza, J. & Pevida, C. & Pis, J.J. & Rubiera, F., 2013. "Oxy-coal combustion in an entrained flow reactor: Application of specific char and volatile combustion and radiation models for oxy-firing conditions," Energy, Elsevier, vol. 62(C), pages 255-268.
    2. Hu, Yukun & Yan, Jinyue & Li, Hailong, 2012. "Effects of flue gas recycle on oxy-coal power generation systems," Applied Energy, Elsevier, vol. 97(C), pages 255-263.
    3. Álvarez, L. & Gharebaghi, M. & Jones, J.M. & Pourkashanian, M. & Williams, A. & Riaza, J. & Pevida, C. & Pis, J.J. & Rubiera, F., 2013. "CFD modeling of oxy-coal combustion: Prediction of burnout, volatile and NO precursors release," Applied Energy, Elsevier, vol. 104(C), pages 653-665.
    4. Hu, Yukun & Yan, Jinyue, 2012. "Characterization of flue gas in oxy-coal combustion processes for CO2 capture," Applied Energy, Elsevier, vol. 90(1), pages 113-121.
    5. Li, H. & Yan, J. & Yan, J. & Anheden, M., 2009. "Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system," Applied Energy, Elsevier, vol. 86(2), pages 202-213, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
    2. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    3. Hu, Yukun & Li, Xun & Li, Hailong & Yan, Jinyue, 2013. "Peak and off-peak operations of the air separation unit in oxy-coal combustion power generation systems," Applied Energy, Elsevier, vol. 112(C), pages 747-754.
    4. Xu, Mingxin & Li, Shiyuan & Wu, Yinghai & Jia, Lufei & Lu, Qinggang, 2017. "The characteristics of recycled NO reduction over char during oxy-fuel fluidized bed combustion," Applied Energy, Elsevier, vol. 190(C), pages 553-562.
    5. Zhang, Yanwei & Zhu, Qiaoqiao & Lin, Xiangdong & Xu, Zemin & Liu, Jianbo & Wang, Zhihua & Zhou, Junhu & Cen, Kefa, 2013. "A novel thermochemical cycle for the dissociation of CO2 and H2O using sustainable energy sources," Applied Energy, Elsevier, vol. 108(C), pages 1-7.
    6. Huang, Qingxi & Yao, Jinduo & Hu, Yukun & Liu, Shengchun & Li, Hailong & Sun, Qie, 2022. "Integrating compressed CO2 energy storage in an oxy-coal combustion power plant with CO2 capture," Energy, Elsevier, vol. 254(PC).
    7. Gupta, Sapna & Adams, Joseph J. & Wilson, Jamie R. & Eddings, Eric G. & Mahapatra, Manoj K. & Singh, Prabhakar, 2016. "Performance and post-test characterization of an OTM system in an experimental coal gasifier," Applied Energy, Elsevier, vol. 165(C), pages 72-80.
    8. Oboirien, B.O. & Thulari, V. & North, B.C., 2014. "Major and trace elements in coal bottom ash at different oxy coal combustion conditions," Applied Energy, Elsevier, vol. 129(C), pages 207-216.
    9. Li, Shiyuan & Xu, Mingxin & Jia, Lufei & Tan, Li & Lu, Qinggang, 2016. "Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed," Applied Energy, Elsevier, vol. 173(C), pages 197-209.
    10. Mansir, Ibrahim B. & Ben-Mansour, Rached & Habib, Mohamed A., 2018. "Oxy-fuel combustion in a two-pass oxygen transport reactor for fire tube boiler application," Applied Energy, Elsevier, vol. 229(C), pages 828-840.
    11. Chi, Chung-Cheng & Lin, Ta-Hui, 2013. "Oxy-oil combustion characteristics of an existing furnace," Applied Energy, Elsevier, vol. 102(C), pages 923-930.
    12. Choi, Munkyoung & Cho, Minki & Lee, J.W., 2016. "Empirical formula for the mass flux in chemical absorption of CO2 with ammonia droplets," Applied Energy, Elsevier, vol. 164(C), pages 1-9.
    13. Ramadan, Islam A. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Effects of oxidizer flexibility and bluff-body blockage ratio on flammability limits of diffusion flames," Applied Energy, Elsevier, vol. 178(C), pages 19-28.
    14. Si, Junping & Liu, Xiaowei & Xu, Minghou & Sheng, Lei & Zhou, Zijian & Wang, Chao & Zhang, Yang & Seo, Yong-Chil, 2014. "Effect of kaolin additive on PM2.5 reduction during pulverized coal combustion: Importance of sodium and its occurrence in coal," Applied Energy, Elsevier, vol. 114(C), pages 434-444.
    15. Li, Kangkang & Yu, Hai & Qi, Guojie & Feron, Paul & Tade, Moses & Yu, Jingwen & Wang, Shujuan, 2015. "Rate-based modelling of combined SO2 removal and NH3 recycling integrated with an aqueous NH3-based CO2 capture process," Applied Energy, Elsevier, vol. 148(C), pages 66-77.
    16. Granados, D.A. & Chejne, F. & Mejía, J.M., 2015. "Oxy-fuel combustion as an alternative for increasing lime production in rotary kilns," Applied Energy, Elsevier, vol. 158(C), pages 107-117.
    17. Huang, Weijia & Zheng, Danxing & Xie, Hui & Li, Yun & Wu, Weize, 2019. "Hybrid physical-chemical absorption process for carbon capture with strategy of high-pressure absorption/medium-pressure desorption," Applied Energy, Elsevier, vol. 239(C), pages 928-937.
    18. Xu, Ming-Xin & Wu, Hai-Bo & Wu, Ya-Chang & Wang, Han-Xiao & Ouyang, Hao-Dong & Lu, Qiang, 2021. "Design and evaluation of a novel system for the flue gas compression and purification from the oxy-fuel combustion process," Applied Energy, Elsevier, vol. 285(C).
    19. Guo, Junjun & Liu, Zhaohui & Hu, Fan & Li, Pengfei & Luo, Wei & Huang, Xiaohong, 2018. "A compatible configuration strategy for burner streams in a 200 MWe tangentially fired oxy-fuel combustion boiler," Applied Energy, Elsevier, vol. 220(C), pages 59-69.
    20. Wu, Hai-bo & Xu, Ming-xin & Li, Yan-bing & Wu, Jin-hua & Shen, Jian-chong & Liao, Haiyan, 2020. "Experimental research on the process of compression and purification of CO2 in oxy-fuel combustion," Applied Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:130:y:2014:i:c:p:543-551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.